
The mass of an electron is $9.11 \times {10^{ - 31}}$ kg. Planck’s constant is $6.626 \times {10^{ - 34}}$ Js then the uncertainty involved in the measurement of velocity within a distance of $0.1$ angstrom is-
A.$5.79 \times {10^6}m{s^{ - 1}}$
B.$5.79 \times {10^7}m{s^{ - 1}}$
C.$5.79 \times {10^8}m{s^{ - 1}}$
D.$5.79 \times {10^5}m{s^{ - 1}}$
Answer
579.6k+ views
Hint: Heisenberg’s uncertainty principle is given by the formula-
$\Delta x.\Delta p \geqslant \dfrac{h}{{4\pi }}$ where $\Delta x$ is uncertainty in position, $\Delta p$ is uncertainty in momentum, and h is Planck’s constant. Also we know that the formula \[\Delta p = m\Delta v\] where m is the mass of a particle and $\Delta v$ is uncertainty in velocity. Use these two formulas to find the certainty of velocity.
Complete step by step answer:
Given the mass of electron m=$9.11 \times {10^{ - 31}}$ kg
Planck’s constant h=$6.626 \times {10^{ - 34}}$ Js
Distance or uncertainty in position$\Delta x$=$0.1$ angstrom$ = {10^{ - 10}}m$
Now we know that Heisenberg’s uncertainty principle is given by the formula-
$ \Rightarrow $ $\Delta x.\Delta p \geqslant \dfrac{h}{{4\pi }}$ --- (i)
where $\Delta x$ is uncertainty in position, $\Delta p$ is uncertainty in momentum, and h is Planck’s constant.
Also, \[\Delta p = m\Delta v\]-- (ii)
where m is the mass of the particle and $\Delta v$ is uncertainty in velocity.
From eq. (i) and (ii) we can write,
$ \Rightarrow \Delta x.m\Delta v \geqslant \dfrac{h}{{4\pi }}$
We can rearrange it and write as-
$ \Rightarrow \Delta x.\Delta v \geqslant \dfrac{h}{{4\pi m}}$
Now putting the given values in the formula, we get-
$ \Rightarrow \Delta v.\left( {{{10}^{ - 10}}} \right) \geqslant \dfrac{{6.626 \times {{10}^{ - 34}}}}{{4 \times \dfrac{{22}}{7} \times 9.1 \times {{10}^{ - 31}}}}$
On adjusting we get,
$ \Rightarrow \Delta v \geqslant \dfrac{{6.626 \times {{10}^{ - 34}} \times 7}}{{4 \times 22 \times 9.1 \times {{10}^{ - 31}} \times {{10}^{ - 10}}}}$
On solving we get,
$ \Rightarrow \Delta v \geqslant \dfrac{{6.626 \times {{10}^{ - 34}} \times 7}}{{88 \times 9.1 \times {{10}^{ - 41}}}}$
$ \Rightarrow \Delta v \geqslant \dfrac{{46.382 \times {{10}^7}}}{{800.8}}$
On division we get,
$ \Rightarrow \Delta v \geqslant 0.0579195 \times {10^7}$
On multiplying we get,
$ \Rightarrow \Delta v \geqslant 5.79 \times {10^5}m{s^{ - 1}}$
This is the value of uncertainty involved in measurement of velocity of electrons within the distance of $0.1$ angstrom.
Hence the correct option is D.
Note:
Heisenberg’s uncertainty principle tells us that position and momentum of a particle cannot be simultaneously measured with high precision. It is important for microscopic particles. It is also given by-
$\Delta E.\Delta t \geqslant \dfrac{h}{{4\pi }}$ where $\Delta E$ is uncertainty in energy and $\Delta t$ is uncertainty in time.
Here it tells us that the energy of a photon is less than the energy needed to change the position and velocity of bigger bodies when it collides with them.
$\Delta x.\Delta p \geqslant \dfrac{h}{{4\pi }}$ where $\Delta x$ is uncertainty in position, $\Delta p$ is uncertainty in momentum, and h is Planck’s constant. Also we know that the formula \[\Delta p = m\Delta v\] where m is the mass of a particle and $\Delta v$ is uncertainty in velocity. Use these two formulas to find the certainty of velocity.
Complete step by step answer:
Given the mass of electron m=$9.11 \times {10^{ - 31}}$ kg
Planck’s constant h=$6.626 \times {10^{ - 34}}$ Js
Distance or uncertainty in position$\Delta x$=$0.1$ angstrom$ = {10^{ - 10}}m$
Now we know that Heisenberg’s uncertainty principle is given by the formula-
$ \Rightarrow $ $\Delta x.\Delta p \geqslant \dfrac{h}{{4\pi }}$ --- (i)
where $\Delta x$ is uncertainty in position, $\Delta p$ is uncertainty in momentum, and h is Planck’s constant.
Also, \[\Delta p = m\Delta v\]-- (ii)
where m is the mass of the particle and $\Delta v$ is uncertainty in velocity.
From eq. (i) and (ii) we can write,
$ \Rightarrow \Delta x.m\Delta v \geqslant \dfrac{h}{{4\pi }}$
We can rearrange it and write as-
$ \Rightarrow \Delta x.\Delta v \geqslant \dfrac{h}{{4\pi m}}$
Now putting the given values in the formula, we get-
$ \Rightarrow \Delta v.\left( {{{10}^{ - 10}}} \right) \geqslant \dfrac{{6.626 \times {{10}^{ - 34}}}}{{4 \times \dfrac{{22}}{7} \times 9.1 \times {{10}^{ - 31}}}}$
On adjusting we get,
$ \Rightarrow \Delta v \geqslant \dfrac{{6.626 \times {{10}^{ - 34}} \times 7}}{{4 \times 22 \times 9.1 \times {{10}^{ - 31}} \times {{10}^{ - 10}}}}$
On solving we get,
$ \Rightarrow \Delta v \geqslant \dfrac{{6.626 \times {{10}^{ - 34}} \times 7}}{{88 \times 9.1 \times {{10}^{ - 41}}}}$
$ \Rightarrow \Delta v \geqslant \dfrac{{46.382 \times {{10}^7}}}{{800.8}}$
On division we get,
$ \Rightarrow \Delta v \geqslant 0.0579195 \times {10^7}$
On multiplying we get,
$ \Rightarrow \Delta v \geqslant 5.79 \times {10^5}m{s^{ - 1}}$
This is the value of uncertainty involved in measurement of velocity of electrons within the distance of $0.1$ angstrom.
Hence the correct option is D.
Note:
Heisenberg’s uncertainty principle tells us that position and momentum of a particle cannot be simultaneously measured with high precision. It is important for microscopic particles. It is also given by-
$\Delta E.\Delta t \geqslant \dfrac{h}{{4\pi }}$ where $\Delta E$ is uncertainty in energy and $\Delta t$ is uncertainty in time.
Here it tells us that the energy of a photon is less than the energy needed to change the position and velocity of bigger bodies when it collides with them.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

