
The locus of the mid-point of those chord of the circle ${{x}^{2}}+{{y}^{2}}=4$ which subtend a right angle at the origin is –
(a) ${{x}^{2}}+{{y}^{2}}-2x-2y=0$
(b) ${{x}^{2}}+{{y}^{2}}=4$
(c) ${{x}^{2}}+{{y}^{2}}=2$
(d) \[{{\left( x-1 \right)}^{2}}+{{\left( y-1 \right)}^{2}}=5\]
Answer
573.3k+ views
Hint: This question is based on concept of locus and property of chord of circle. First of all, we assume the coordinate of the midpoint of the chord is$\left( h,k \right)$. Let the chord is $AB$ and the parametric points $A$ and $B$ are $\left( 2\cos \theta ,2\sin \theta \right)$ and $\left( 2\sin \varphi ,2\cos \varphi \right)$ respectively. Now using mid-point theorem and perpendicular formula, we solve for locus of$\left( h,k \right)$. By solving equation, we eliminate parametric variables and at last replace $h$ with $x$ and $k$ with$y$.
(i) Mid-point Theorem: If $M$ is midpoint of line segment$AB$, where $A$ is $\left( {{x}_{1}},{{y}_{1}} \right)$ and $B$ is $\left( {{x}_{2}},{{y}_{2}} \right)$, and let $M$ be $\left( x,y \right)$. Then
$x=\dfrac{{{x}_{1}}+{{x}_{2}}}{2}$ and $y=\dfrac{{{y}_{1}}+{{y}_{2}}}{2}$.
(ii) Perpendicular formula: If two lines of slope ${{m}_{1}}$ and ${{m}_{2}}$ are perpendicular to each other, then
${{m}_{1}}\times {{m}_{2}}=-1$
Complete step-by-step answer:
Now, getting started with the solution, let’s write the given data.
Given equation of circle is ${{x}^{2}}+{{y}^{2}}=4$ … (i)
Centre is $\left( 0,0 \right)$ and radius $=2$
So, the circle can be represented as –
Let $AB$ is the chord of a circle joining parametric points $A\left( \theta \right)$ and$B\left( \varphi \right)$. So, $A$ is $\left( 2\cos \theta ,2\sin \theta \right)$ and $B$ is$\left( 2\cos \varphi ,2\sin \varphi \right)$.
As we know that, slope of line joining two points $\left( {{x}_{1}},{{y}_{1}} \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)$ $=\dfrac{\left( {{y}_{2}}-{{y}_{1}} \right)}{\left( {{x}_{2}}-{{x}_{1}} \right)}$.
So, slope of line $OA$ joining points $O\left( 0,0 \right)$ and $A\left( 2\cos \theta ,2\sin \theta \right)$ \[=\dfrac{\left( 2\sin \theta -0 \right)}{\left( 2\cos \theta -0 \right)}\]
$\Rightarrow {{m}_{OA}}=\tan \theta $
And, slope of line $OB$ joining $O\left( 0,0 \right)$ and $B\left( 2\cos \varphi ,2\sin \varphi \right)$ $==\dfrac{\left( 2\sin \varphi -0 \right)}{\left( 2\cos \varphi -0 \right)}$
$\Rightarrow {{m}_{OB}}=\tan \varphi $
Now, as we know that multiplication of two perpendicular lines of slope ${{m}_{1}}$ and ${{m}_{2}}$ is $\left( -1 \right)$.
${{m}_{1}}\times {{m}_{2}}=-1$
According to the question, $OA$ and $OB$ are perpendicular.
${{m}_{OA}}\times {{m}_{OB}}=-1$
$\Rightarrow \tan \theta \times \tan \varphi =-1$
\[\Rightarrow \dfrac{\sin \theta \times \sin \varphi }{\cos \theta \times \cos \varphi }=-1\]
\[\Rightarrow \cos \theta .\cos \varphi +\sin \theta .\sin \varphi =0\] … (ii)
Now as we know that midpoint $M\left( x,y \right)$ of line segment$AB$, where $A\left( {{x}_{1}},{{y}_{1}} \right)$ and $B\left( {{x}_{2}},{{y}_{2}} \right)$ is –
$x=\dfrac{{{x}_{1}}+{{x}_{2}}}{2}$ and$y=\dfrac{{{y}_{1}}+{{y}_{2}}}{2}$.
Now let us assume midpoint of chord$AB$, where $A$ is $\left( 2\cos \theta ,2\sin \theta \right)$ and $B$ is $\left( 2\cos \varphi ,2\sin \varphi \right)$ is $P\left( h,k \right)$.
Then,
$h=\dfrac{2\cos \theta +2\cos \varphi }{2}$
$\Rightarrow h=\cos \theta +\cos \varphi $ … (iii)
$k=\dfrac{2\sin \theta +2\sin \varphi }{2}$
$\Rightarrow k=\sin \theta +\sin \varphi $ … (iv)
Now by adding squares of equation (iii) and (iv), we get
${{h}^{2}}={{\left( \cos \theta +\cos \varphi \right)}^{2}}$ and ${{k}^{2}}={{\left( \sin \theta +\sin \varphi \right)}^{2}}$
\[\Rightarrow {{h}^{2}}+{{k}^{2}}={{\cos }^{2}}\theta +{{\cos }^{2}}\varphi +2\cos \theta \cos \varphi +{{\sin }^{2}}\theta +{{\sin }^{2}}\varphi +2\sin \theta \sin \varphi \]
\[\because {{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1\]
\[\Rightarrow {{h}^{2}}+{{k}^{2}}=1+1+2\left( \cos \theta \cos \varphi +\sin \theta \sin \varphi \right)\]
Now by equation (ii), \[\cos \theta .\cos \varphi +\sin \theta .\sin \varphi =0\]
\[\Rightarrow {{h}^{2}}+{{k}^{2}}=2+0\]
\[\Rightarrow {{h}^{2}}+{{k}^{2}}=2\]
Now by replacing $h\to x$ and$k\to y$, we have
\[\Rightarrow {{x}^{2}}+{{y}^{2}}=2\]
So, the locus of the midpoint of chord is a circle, \[{{x}^{2}}+{{y}^{2}}=2\].
So, the correct answer is “Option A”.
Note: (i) In this type of question while solving equations, we should try to eliminate all other variables except $h$ and$k$, and get equations in $h$ and $k$.
(ii) In this question, we get an equation$\tan \theta \times \tan \varphi =-1$.
If we consider formula:
$\tan \left( \theta -\varphi \right)=\dfrac{\tan \theta -\tan \varphi }{1+\tan \theta .\tan \varphi }$
$\because \tan \left( \theta -\varphi \right)\to \infty $
$\Rightarrow \left( \theta -\varphi \right)=90{}^\circ $
$\Rightarrow \theta =90{}^\circ +\varphi $
We can use this relation also to solve the equation at last.
(iii) Here, students should take care while squaring and adding the two equations that there should not be any calculation mistakes, otherwise the whole question will be wrong.
(i) Mid-point Theorem: If $M$ is midpoint of line segment$AB$, where $A$ is $\left( {{x}_{1}},{{y}_{1}} \right)$ and $B$ is $\left( {{x}_{2}},{{y}_{2}} \right)$, and let $M$ be $\left( x,y \right)$. Then
$x=\dfrac{{{x}_{1}}+{{x}_{2}}}{2}$ and $y=\dfrac{{{y}_{1}}+{{y}_{2}}}{2}$.
(ii) Perpendicular formula: If two lines of slope ${{m}_{1}}$ and ${{m}_{2}}$ are perpendicular to each other, then
${{m}_{1}}\times {{m}_{2}}=-1$
Complete step-by-step answer:
Now, getting started with the solution, let’s write the given data.
Given equation of circle is ${{x}^{2}}+{{y}^{2}}=4$ … (i)
Centre is $\left( 0,0 \right)$ and radius $=2$
So, the circle can be represented as –
Let $AB$ is the chord of a circle joining parametric points $A\left( \theta \right)$ and$B\left( \varphi \right)$. So, $A$ is $\left( 2\cos \theta ,2\sin \theta \right)$ and $B$ is$\left( 2\cos \varphi ,2\sin \varphi \right)$.
As we know that, slope of line joining two points $\left( {{x}_{1}},{{y}_{1}} \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)$ $=\dfrac{\left( {{y}_{2}}-{{y}_{1}} \right)}{\left( {{x}_{2}}-{{x}_{1}} \right)}$.
So, slope of line $OA$ joining points $O\left( 0,0 \right)$ and $A\left( 2\cos \theta ,2\sin \theta \right)$ \[=\dfrac{\left( 2\sin \theta -0 \right)}{\left( 2\cos \theta -0 \right)}\]
$\Rightarrow {{m}_{OA}}=\tan \theta $
And, slope of line $OB$ joining $O\left( 0,0 \right)$ and $B\left( 2\cos \varphi ,2\sin \varphi \right)$ $==\dfrac{\left( 2\sin \varphi -0 \right)}{\left( 2\cos \varphi -0 \right)}$
$\Rightarrow {{m}_{OB}}=\tan \varphi $
Now, as we know that multiplication of two perpendicular lines of slope ${{m}_{1}}$ and ${{m}_{2}}$ is $\left( -1 \right)$.
${{m}_{1}}\times {{m}_{2}}=-1$
According to the question, $OA$ and $OB$ are perpendicular.
${{m}_{OA}}\times {{m}_{OB}}=-1$
$\Rightarrow \tan \theta \times \tan \varphi =-1$
\[\Rightarrow \dfrac{\sin \theta \times \sin \varphi }{\cos \theta \times \cos \varphi }=-1\]
\[\Rightarrow \cos \theta .\cos \varphi +\sin \theta .\sin \varphi =0\] … (ii)
Now as we know that midpoint $M\left( x,y \right)$ of line segment$AB$, where $A\left( {{x}_{1}},{{y}_{1}} \right)$ and $B\left( {{x}_{2}},{{y}_{2}} \right)$ is –
$x=\dfrac{{{x}_{1}}+{{x}_{2}}}{2}$ and$y=\dfrac{{{y}_{1}}+{{y}_{2}}}{2}$.
Now let us assume midpoint of chord$AB$, where $A$ is $\left( 2\cos \theta ,2\sin \theta \right)$ and $B$ is $\left( 2\cos \varphi ,2\sin \varphi \right)$ is $P\left( h,k \right)$.
Then,
$h=\dfrac{2\cos \theta +2\cos \varphi }{2}$
$\Rightarrow h=\cos \theta +\cos \varphi $ … (iii)
$k=\dfrac{2\sin \theta +2\sin \varphi }{2}$
$\Rightarrow k=\sin \theta +\sin \varphi $ … (iv)
Now by adding squares of equation (iii) and (iv), we get
${{h}^{2}}={{\left( \cos \theta +\cos \varphi \right)}^{2}}$ and ${{k}^{2}}={{\left( \sin \theta +\sin \varphi \right)}^{2}}$
\[\Rightarrow {{h}^{2}}+{{k}^{2}}={{\cos }^{2}}\theta +{{\cos }^{2}}\varphi +2\cos \theta \cos \varphi +{{\sin }^{2}}\theta +{{\sin }^{2}}\varphi +2\sin \theta \sin \varphi \]
\[\because {{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1\]
\[\Rightarrow {{h}^{2}}+{{k}^{2}}=1+1+2\left( \cos \theta \cos \varphi +\sin \theta \sin \varphi \right)\]
Now by equation (ii), \[\cos \theta .\cos \varphi +\sin \theta .\sin \varphi =0\]
\[\Rightarrow {{h}^{2}}+{{k}^{2}}=2+0\]
\[\Rightarrow {{h}^{2}}+{{k}^{2}}=2\]
Now by replacing $h\to x$ and$k\to y$, we have
\[\Rightarrow {{x}^{2}}+{{y}^{2}}=2\]
So, the locus of the midpoint of chord is a circle, \[{{x}^{2}}+{{y}^{2}}=2\].
So, the correct answer is “Option A”.
Note: (i) In this type of question while solving equations, we should try to eliminate all other variables except $h$ and$k$, and get equations in $h$ and $k$.
(ii) In this question, we get an equation$\tan \theta \times \tan \varphi =-1$.
If we consider formula:
$\tan \left( \theta -\varphi \right)=\dfrac{\tan \theta -\tan \varphi }{1+\tan \theta .\tan \varphi }$
$\because \tan \left( \theta -\varphi \right)\to \infty $
$\Rightarrow \left( \theta -\varphi \right)=90{}^\circ $
$\Rightarrow \theta =90{}^\circ +\varphi $
We can use this relation also to solve the equation at last.
(iii) Here, students should take care while squaring and adding the two equations that there should not be any calculation mistakes, otherwise the whole question will be wrong.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

What is Environment class 11 chemistry CBSE

Bond order ofO2 O2+ O2 and O22 is in order A O2 langle class 11 chemistry CBSE

How many squares are there in a chess board A 1296 class 11 maths CBSE

Distinguish between verbal and nonverbal communica class 11 english CBSE

The equivalent weight of Mohrs salt FeSO4 NH42SO4 6H2O class 11 chemistry CBSE

