
The locus of the midpoint of the chord of the circle ${{x}^{2}}+{{y}^{2}}-2x-2y-2=0$ which makes an angle of $120{}^\circ $ at the centre is –
(a) ${{x}^{2}}+{{y}^{2}}-2x-2y+1=0$
(b) ${{x}^{2}}+{{y}^{2}}+x+y-1=0$
(c) ${{x}^{2}}+{{y}^{2}}-2x-2y-1=0$
(d) None of these
Answer
585.3k+ views
Hint: This question involves mid-point theorem, parametric points of circle and concept of locus. First of all, we assume a chord in the form of parametric points and then by mid-point theorem, get the midpoint of the chord. Let us assume mid-point as and solve for the equation in terms of $h$ and $k$ and then replace $h$ with $x$ and $k$ with$y$.
We will use following properties and formula –
(i) If $\alpha $ is the angle between two lines of slope ${{m}_{1}}$ and${{m}_{2}}$, then
$\tan \alpha =\dfrac{{{m}_{1}}-{{m}_{2}}}{1+{{m}_{1}}{{m}_{2}}}$
(ii) Mid-point Theorem: If $M$ is midpoint of line segment$AB$, where $A$ is $\left( {{x}_{1}},{{y}_{1}} \right)$ and $B$ is$\left( {{x}_{2}},{{y}_{2}} \right)$, and let $M$ be $\left( x,y \right)$. Then
$x=\dfrac{{{x}_{1}}+{{x}_{2}}}{2}$ and$y=\dfrac{{{y}_{1}}+{{y}_{2}}}{2}$.
Complete step-by-step answer:
Now, we have been given that the equation of circle is ${{x}^{2}}+{{y}^{2}}-2x-2y-2=0$
$\Rightarrow \left( {{x}^{2}}-2x+1 \right)+\left( {{y}^{2}}-2y+1 \right)-2-2=0$
$\Rightarrow {{\left( x-1 \right)}^{2}}+{{\left( y-1 \right)}^{2}}=4$ … (i)
$\Rightarrow {{\left( x-1 \right)}^{2}}+{{\left( y-1 \right)}^{2}}={{2}^{2}}$
So, the centre is $\left( 1,1 \right)$ and radius is $2$.
Thus, the circle can be represented as –
As we know that if the equation of a circle is${{\left( x-\alpha \right)}^{2}}+{{\left( y-\beta \right)}^{2}}={{r}^{2}}$, then parametric point $P$ is assumed as $P\left( \theta \right)$.
${{x}_{1}}=\left( \alpha +r\cos \theta \right)$ and${{y}_{1}}=\left( \beta +r\sin \theta \right)$
Let us assume $AB$in the parametric form of points $A\left( \theta \right)$ and$B\left( \varphi \right)$. So, $A$ is $\left( 1+2\cos \theta ,1+2\sin \theta \right)$ and $B$ is$\left( 1+2\cos \varphi ,1+2\sin \varphi \right)$.
As we know that, slope of line joining two points $\left( {{x}_{1}},{{y}_{1}} \right)$ and$\left( {{x}_{2}},{{y}_{2}} \right)$ $=\dfrac{\left( {{y}_{2}}-{{y}_{1}} \right)}{\left( {{x}_{2}}-{{x}_{1}} \right)}$.
So, slope of line $OA$ joining points $O\left( 0,0 \right)$ and $A\left( 1+2\cos \theta ,1+2\sin \theta \right)$ \[=\dfrac{\left( 1+2\sin \theta \right)-1}{\left( 1+2\cos \theta \right)-1}\]
$\Rightarrow {{m}_{OA}}=\tan \theta $
And, slope of line $OB$ joining $O\left( 0,0 \right)$ and $B\left( 1+2\cos \varphi ,1+2\sin \varphi \right)$ $=\dfrac{\left( 1+2\sin \varphi \right)-1}{\left( 1+2\cos \varphi \right)-1}$
$\Rightarrow {{m}_{OB}}=\tan \varphi $
As we know that, if $\alpha $ is the angle between two lines of slope ${{m}_{1}}$ and${{m}_{2}}$, then
$\tan \alpha =\dfrac{{{m}_{1}}-{{m}_{2}}}{1+{{m}_{1}}{{m}_{2}}}$ .
Now according to the question, angle between line $OA$ and $OB$ is
$\tan \left( 120{}^\circ \right)=\dfrac{{{m}_{OA}}-{{m}_{OB}}}{1+{{m}_{OA}}.{{m}_{OB}}}$
$\Rightarrow \tan \left( 120{}^\circ \right)=\dfrac{\tan \theta -\tan \varphi }{1+\tan \theta .\tan \varphi }$
$\Rightarrow \tan \left( 120{}^\circ \right)=\tan \left( \theta -\varphi \right)$
$\Rightarrow 120{}^\circ =\left( \theta -\varphi \right)$ … (iii)
Now, as we know that, if $M\left( x,y \right)$ is midpoint of line segment$AB$, where $A$ is $\left( {{x}_{1}},{{y}_{1}} \right)$ and $B$ is$\left( {{x}_{2}},{{y}_{2}} \right)$, then
$x=\dfrac{{{x}_{1}}+{{x}_{2}}}{2}$ and$y=\dfrac{{{y}_{1}}+{{y}_{2}}}{2}$.
Let midpoint of the chord $AB$ is $M\left( h,k \right)$ and $A$ is $\left( 1+2\cos \theta ,1+2\sin \theta \right)$ and $B$ is$\left( 1+2\cos \varphi ,1+2\sin \varphi \right)$.
$h=\dfrac{\left( 1+2\cos \theta \right)+\left( 1+2\cos \varphi \right)}{2}$
\[\Rightarrow 2h=2+2\left( \cos \theta +\cos \varphi \right)\]
\[\Rightarrow h-1=\cos \theta +\cos \varphi \]
\[\Rightarrow {{\left( h-1 \right)}^{2}}={{\left( \cos \theta +\cos \varphi \right)}^{2}}\] … (iii)
And, $k=\dfrac{\left( 1+2\sin \theta \right)+\left( 1+2\sin \varphi \right)}{2}$
\[\Rightarrow 2k=2+2\left( \sin \theta +\sin \varphi \right)\]
\[\Rightarrow k-1=\sin \theta +\sin \varphi \]
\[\Rightarrow {{\left( k-1 \right)}^{2}}={{\left( \sin \theta +\sin \varphi \right)}^{2}}\] … (iv)
By adding equation (iii) and (iv), we get
\[\Rightarrow {{\left( h-1 \right)}^{2}}+{{\left( k-1 \right)}^{2}}={{\cos }^{2}}\theta +{{\cos }^{2}}\varphi +2\cos \theta \cos \varphi +{{\sin }^{2}}\theta +{{\sin }^{2}}\varphi +2\sin \theta \sin \varphi \]
\[\because {{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1\] and $\cos {{\theta }_{1}}.\cos {{\theta }_{2}}+\sin {{\theta }_{1}}.\sin {{\theta }_{2}}=\cos \left( {{\theta }_{1}}-{{\theta }_{2}} \right)$
\[\Rightarrow {{\left( h-1 \right)}^{2}}+{{\left( k-1 \right)}^{2}}=2+2\cos \left( \theta -\varphi \right)\]
As we know from equation (iii), $\left( \theta -\varphi \right)=120{}^\circ $ , so we have
\[\Rightarrow {{\left( h-1 \right)}^{2}}+{{\left( k-1 \right)}^{2}}=2+2\cos \left( 120{}^\circ \right)\]
\[\Rightarrow {{\left( h-1 \right)}^{2}}+{{\left( k-1 \right)}^{2}}=2+2\left( \dfrac{-1}{2} \right)\]
\[\Rightarrow {{\left( h-1 \right)}^{2}}+{{\left( k-1 \right)}^{2}}=1\]
Now by replacing $h\to x$ and$k\to y$, we have
\[\Rightarrow {{\left( x-1 \right)}^{2}}+{{\left( y-1 \right)}^{2}}=1\]
\[\Rightarrow {{x}^{2}}-2x+1+{{y}^{2}}-2y+1=1\]
\[\Rightarrow {{x}^{2}}+{{y}^{2}}-2x-2y+1=0\]
So, the locus of the midpoint of the chord is \[{{x}^{2}}+{{y}^{2}}-2x-2y+1=0\].
So, the correct answer is “Option A”.
Note: (i) In this question, students should take care of the angle between two lines formula,
$\tan \alpha =\dfrac{{{m}_{1}}-{{m}_{2}}}{1+{{m}_{1}}{{m}_{2}}}$
Don’t interchange the two signs; else it will make the whole question wrong.
(ii) Students should take care of calculation mistakes. In options, there is only change in signs. So, take care of signs properly.
We will use following properties and formula –
(i) If $\alpha $ is the angle between two lines of slope ${{m}_{1}}$ and${{m}_{2}}$, then
$\tan \alpha =\dfrac{{{m}_{1}}-{{m}_{2}}}{1+{{m}_{1}}{{m}_{2}}}$
(ii) Mid-point Theorem: If $M$ is midpoint of line segment$AB$, where $A$ is $\left( {{x}_{1}},{{y}_{1}} \right)$ and $B$ is$\left( {{x}_{2}},{{y}_{2}} \right)$, and let $M$ be $\left( x,y \right)$. Then
$x=\dfrac{{{x}_{1}}+{{x}_{2}}}{2}$ and$y=\dfrac{{{y}_{1}}+{{y}_{2}}}{2}$.
Complete step-by-step answer:
Now, we have been given that the equation of circle is ${{x}^{2}}+{{y}^{2}}-2x-2y-2=0$
$\Rightarrow \left( {{x}^{2}}-2x+1 \right)+\left( {{y}^{2}}-2y+1 \right)-2-2=0$
$\Rightarrow {{\left( x-1 \right)}^{2}}+{{\left( y-1 \right)}^{2}}=4$ … (i)
$\Rightarrow {{\left( x-1 \right)}^{2}}+{{\left( y-1 \right)}^{2}}={{2}^{2}}$
So, the centre is $\left( 1,1 \right)$ and radius is $2$.
Thus, the circle can be represented as –
As we know that if the equation of a circle is${{\left( x-\alpha \right)}^{2}}+{{\left( y-\beta \right)}^{2}}={{r}^{2}}$, then parametric point $P$ is assumed as $P\left( \theta \right)$.
${{x}_{1}}=\left( \alpha +r\cos \theta \right)$ and${{y}_{1}}=\left( \beta +r\sin \theta \right)$
Let us assume $AB$in the parametric form of points $A\left( \theta \right)$ and$B\left( \varphi \right)$. So, $A$ is $\left( 1+2\cos \theta ,1+2\sin \theta \right)$ and $B$ is$\left( 1+2\cos \varphi ,1+2\sin \varphi \right)$.
As we know that, slope of line joining two points $\left( {{x}_{1}},{{y}_{1}} \right)$ and$\left( {{x}_{2}},{{y}_{2}} \right)$ $=\dfrac{\left( {{y}_{2}}-{{y}_{1}} \right)}{\left( {{x}_{2}}-{{x}_{1}} \right)}$.
So, slope of line $OA$ joining points $O\left( 0,0 \right)$ and $A\left( 1+2\cos \theta ,1+2\sin \theta \right)$ \[=\dfrac{\left( 1+2\sin \theta \right)-1}{\left( 1+2\cos \theta \right)-1}\]
$\Rightarrow {{m}_{OA}}=\tan \theta $
And, slope of line $OB$ joining $O\left( 0,0 \right)$ and $B\left( 1+2\cos \varphi ,1+2\sin \varphi \right)$ $=\dfrac{\left( 1+2\sin \varphi \right)-1}{\left( 1+2\cos \varphi \right)-1}$
$\Rightarrow {{m}_{OB}}=\tan \varphi $
As we know that, if $\alpha $ is the angle between two lines of slope ${{m}_{1}}$ and${{m}_{2}}$, then
$\tan \alpha =\dfrac{{{m}_{1}}-{{m}_{2}}}{1+{{m}_{1}}{{m}_{2}}}$ .
Now according to the question, angle between line $OA$ and $OB$ is
$\tan \left( 120{}^\circ \right)=\dfrac{{{m}_{OA}}-{{m}_{OB}}}{1+{{m}_{OA}}.{{m}_{OB}}}$
$\Rightarrow \tan \left( 120{}^\circ \right)=\dfrac{\tan \theta -\tan \varphi }{1+\tan \theta .\tan \varphi }$
$\Rightarrow \tan \left( 120{}^\circ \right)=\tan \left( \theta -\varphi \right)$
$\Rightarrow 120{}^\circ =\left( \theta -\varphi \right)$ … (iii)
Now, as we know that, if $M\left( x,y \right)$ is midpoint of line segment$AB$, where $A$ is $\left( {{x}_{1}},{{y}_{1}} \right)$ and $B$ is$\left( {{x}_{2}},{{y}_{2}} \right)$, then
$x=\dfrac{{{x}_{1}}+{{x}_{2}}}{2}$ and$y=\dfrac{{{y}_{1}}+{{y}_{2}}}{2}$.
Let midpoint of the chord $AB$ is $M\left( h,k \right)$ and $A$ is $\left( 1+2\cos \theta ,1+2\sin \theta \right)$ and $B$ is$\left( 1+2\cos \varphi ,1+2\sin \varphi \right)$.
$h=\dfrac{\left( 1+2\cos \theta \right)+\left( 1+2\cos \varphi \right)}{2}$
\[\Rightarrow 2h=2+2\left( \cos \theta +\cos \varphi \right)\]
\[\Rightarrow h-1=\cos \theta +\cos \varphi \]
\[\Rightarrow {{\left( h-1 \right)}^{2}}={{\left( \cos \theta +\cos \varphi \right)}^{2}}\] … (iii)
And, $k=\dfrac{\left( 1+2\sin \theta \right)+\left( 1+2\sin \varphi \right)}{2}$
\[\Rightarrow 2k=2+2\left( \sin \theta +\sin \varphi \right)\]
\[\Rightarrow k-1=\sin \theta +\sin \varphi \]
\[\Rightarrow {{\left( k-1 \right)}^{2}}={{\left( \sin \theta +\sin \varphi \right)}^{2}}\] … (iv)
By adding equation (iii) and (iv), we get
\[\Rightarrow {{\left( h-1 \right)}^{2}}+{{\left( k-1 \right)}^{2}}={{\cos }^{2}}\theta +{{\cos }^{2}}\varphi +2\cos \theta \cos \varphi +{{\sin }^{2}}\theta +{{\sin }^{2}}\varphi +2\sin \theta \sin \varphi \]
\[\because {{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1\] and $\cos {{\theta }_{1}}.\cos {{\theta }_{2}}+\sin {{\theta }_{1}}.\sin {{\theta }_{2}}=\cos \left( {{\theta }_{1}}-{{\theta }_{2}} \right)$
\[\Rightarrow {{\left( h-1 \right)}^{2}}+{{\left( k-1 \right)}^{2}}=2+2\cos \left( \theta -\varphi \right)\]
As we know from equation (iii), $\left( \theta -\varphi \right)=120{}^\circ $ , so we have
\[\Rightarrow {{\left( h-1 \right)}^{2}}+{{\left( k-1 \right)}^{2}}=2+2\cos \left( 120{}^\circ \right)\]
\[\Rightarrow {{\left( h-1 \right)}^{2}}+{{\left( k-1 \right)}^{2}}=2+2\left( \dfrac{-1}{2} \right)\]
\[\Rightarrow {{\left( h-1 \right)}^{2}}+{{\left( k-1 \right)}^{2}}=1\]
Now by replacing $h\to x$ and$k\to y$, we have
\[\Rightarrow {{\left( x-1 \right)}^{2}}+{{\left( y-1 \right)}^{2}}=1\]
\[\Rightarrow {{x}^{2}}-2x+1+{{y}^{2}}-2y+1=1\]
\[\Rightarrow {{x}^{2}}+{{y}^{2}}-2x-2y+1=0\]
So, the locus of the midpoint of the chord is \[{{x}^{2}}+{{y}^{2}}-2x-2y+1=0\].
So, the correct answer is “Option A”.
Note: (i) In this question, students should take care of the angle between two lines formula,
$\tan \alpha =\dfrac{{{m}_{1}}-{{m}_{2}}}{1+{{m}_{1}}{{m}_{2}}}$
Don’t interchange the two signs; else it will make the whole question wrong.
(ii) Students should take care of calculation mistakes. In options, there is only change in signs. So, take care of signs properly.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

