
The length of the normal chord to the parabola, \[{{y}^{2}}=4x\], which subtends a right angle at the vertex is,
(a). \[6\sqrt{3}\]
(b). \[3\sqrt{3}\]
(c). 2
(d). 1
Answer
595.5k+ views
- Hint: Draw figure of parabola, \[{{y}^{2}}=4x\]. Consider the point on the parabola as \[\left( a{{t}^{2}},2at \right)\]. Thus find the value of a and t, thus form the points of parabola and find the length of normal chord.
Complete step-by-step solution -
Let us consider PQ as the normal chord to the parabola, \[{{y}^{2}}=4x\].
We know the general representation of a parabola is \[{{y}^{2}}=4x\], where 4a is the latus rectum. By comparing both general equation and the given equation of parabola, we can say that,
4a = 4
Thus we get, a = 1.
Now let us consider point P as \[\left( a{{t}_{1}}^{2},2a{{t}_{1}} \right)\] and Q \[\left( a{{t}_{2}}^{2},2a{{t}_{2}} \right)\]. Thus putting a = 1, we get the coordinates as P \[\left( {{t}_{1}}^{2},2{{t}_{1}} \right)\] and Q \[\left( {{t}_{2}}^{2},2{{t}_{2}} \right)\].
The equation of the tangent to the normal is given by,
\[y-{{y}_{1}}=\dfrac{-{{y}_{1}}}{2a}\left( x-{{x}_{1}} \right)\], where slope of the normal = \[\dfrac{-{{y}_{1}}}{2a}\].
Thus equation of the normal at point P \[\left( {{t}_{1}}^{2},2{{t}_{1}} \right)\] is,
Take, \[\left( {{x}_{1}},{{y}_{1}} \right)=\left( t_{1}^{2},2{{t}_{1}} \right)\].
\[\begin{align}
& y-2{{t}_{1}}=\dfrac{-2{{t}_{1}}}{2\times 1}\left( x-t_{1}^{2} \right) \\
& \Rightarrow y-2{{t}_{1}}=-{{t}_{1}}\left( x-t_{1}^{2} \right)-(1) \\
\end{align}\]
Now let us find the equation of normal at point Q \[\left( a{{t}_{2}}^{2},2a{{t}_{2}} \right)\].
Take \[\left( {{x}_{1}},{{y}_{1}} \right)=\left( t_{1}^{2},2{{t}_{1}} \right)\] and \[\left( x,y \right)=\left( t_{2}^{2},2{{t}_{2}} \right)\].
\[\begin{align}
& 2{{t}_{2}}-2{{t}_{1}}=\dfrac{-2{{t}_{1}}}{2}\left[ t_{2}^{2}-t_{1}^{2} \right] \\
& \Rightarrow 2\left( {{t}_{2}}-{{t}_{1}} \right)=-{{t}_{1}}\left( t_{2}^{2}-t_{1}^{2} \right) \\
\end{align}\]
We know that, \[{{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)\]
\[\therefore 2\left( {{t}_{2}}-{{t}_{1}} \right)=-{{t}_{1}}\left( {{t}_{2}}-{{t}_{1}} \right)\left( {{t}_{2}}+{{t}_{1}} \right)\]
Cancel out \[\left( {{t}_{2}}-{{t}_{1}} \right)\] from both sides.
\[\therefore 2=-{{t}_{1}}\left( {{t}_{2}}+{{t}_{1}} \right)-(2)\]
Let us consider A as the vertex of the parabola. It is given that the normal chord subtends a right angle at the vertex A (0, 0). Thus we can say that \[PA\bot QA\], from the figure.
The perpendicular normal corresponds to the value that slope of PA and AQ will be (-1) i.e. \[{{m}_{1}}{{m}_{2}}=-1\].
Thus we can say that, (slope of AP) (slope of AQ) = -1
Slope of AP = \[{{m}_{1}}\]
Slope of AQ = \[{{m}_{2}}\]
We can find the slope of a line using the formula, \[m=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}\].
Where, \[\left( {{x}_{1}},{{y}_{1}} \right)=\left( 0,0 \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)=\left( t_{1}^{2},2{{t}_{1}} \right)\].
\[\therefore \] Slope of AP \[={{m}_{1}}=\dfrac{2{{t}_{1}}-0}{t_{1}^{2}-0}=\dfrac{2}{{{t}_{1}}}\]
Similarly, slope of AQ \[={{m}_{2}}=\dfrac{2{{t}_{2}}-0}{t_{2}^{2}-0}=\dfrac{2}{{{t}_{2}}}\]
\[\therefore \] (slope of PA) (slope of AQ) = -1
\[\begin{align}
& \therefore {{m}_{1}}{{m}_{2}}=-1 \\
& \dfrac{2}{{{t}_{1}}}\times \dfrac{2}{{{t}_{2}}}=-1 \\
& \Rightarrow 4=-{{t}_{1}}{{t}_{2}} \\
\end{align}\]
i.e. \[{{t}_{1}}{{t}_{2}}=-4-(3)\]
From equation (2) \[\Rightarrow 2=-{{t}_{1}}\left( {{t}_{2}}+{{t}_{1}} \right)\]
\[\Rightarrow 2=-{{t}_{1}}{{t}_{2}}-t_{1}^{2}\]
Put, \[{{t}_{1}}{{t}_{2}}=4\]
\[\begin{align}
& \Rightarrow 2=+4-t_{1}^{2} \\
& \therefore t_{1}^{2}=2 \\
& {{t}_{1}}=\sqrt{2} \\
\end{align}\]
Now, \[{{t}_{2}}=\dfrac{-4}{{{t}_{1}}}=\dfrac{-4}{\sqrt{2}}\] [rationalizing, multiply by \[\sqrt{2}\] on numerator and denominator]
\[{{t}_{2}}=\dfrac{-4\times \sqrt{2}}{\sqrt{2}\times \sqrt{2}}=\dfrac{-4\sqrt{2}}{2}=-2\sqrt{2}\]
\[\therefore {{t}_{1}}=\sqrt{2}\] and \[{{t}_{2}}=-2\sqrt{2}\].
Thus we get the coordinates of P and Q as,
Coordinates of P \[=\left( {{\left( \sqrt{2} \right)}^{2}},2\sqrt{2} \right)=\left( 2,2\sqrt{2} \right)\]
Coordinates of Q \[=\left( {{\left( -2\sqrt{2} \right)}^{2}},-4\sqrt{2} \right)=\left( 8,-4\sqrt{2} \right)\]
Thus we got coordinates as P \[\left( 2,2\sqrt{2} \right)\] and Q \[\left( 8,-4\sqrt{2} \right)\].
Thus we can find the length of a normal chord PQ by using distance formula.
Distance \[=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}\]
PQ \[=\sqrt{{{\left( 8-2 \right)}^{2}}+{{\left( -4\sqrt{2}-2\sqrt{2} \right)}^{2}}}\] \[\left\{ \begin{align}
& \because \left( {{x}_{1}},{{y}_{1}} \right)=\left( 2,2\sqrt{2} \right) \\
& \left( {{x}_{2}},{{y}_{2}} \right)=\left( 8,-4\sqrt{2} \right) \\
\end{align} \right\}\]
\[\begin{align}
& PQ=\sqrt{{{6}^{2}}+{{\left( -6\sqrt{2} \right)}^{2}}}=\sqrt{36+72} \\
& PQ=\sqrt{108}=\sqrt{6\times 6\times 3} \\
& PQ=6\sqrt{3} \\
\end{align}\]
Thus we got the length of the normal chord PQ as \[6\sqrt{3}\].
\[\therefore \] Option (a) is correct.
Note: The normal chord of parabola is any chord which is perpendicular to the axis of parabola. Here PA and QA are the lines which are perpendicular. The normal chord to parabola, whose ordinate is equal to abscissa subtends right angle at focus.
Complete step-by-step solution -
Let us consider PQ as the normal chord to the parabola, \[{{y}^{2}}=4x\].
We know the general representation of a parabola is \[{{y}^{2}}=4x\], where 4a is the latus rectum. By comparing both general equation and the given equation of parabola, we can say that,
4a = 4
Thus we get, a = 1.
Now let us consider point P as \[\left( a{{t}_{1}}^{2},2a{{t}_{1}} \right)\] and Q \[\left( a{{t}_{2}}^{2},2a{{t}_{2}} \right)\]. Thus putting a = 1, we get the coordinates as P \[\left( {{t}_{1}}^{2},2{{t}_{1}} \right)\] and Q \[\left( {{t}_{2}}^{2},2{{t}_{2}} \right)\].
The equation of the tangent to the normal is given by,
\[y-{{y}_{1}}=\dfrac{-{{y}_{1}}}{2a}\left( x-{{x}_{1}} \right)\], where slope of the normal = \[\dfrac{-{{y}_{1}}}{2a}\].
Thus equation of the normal at point P \[\left( {{t}_{1}}^{2},2{{t}_{1}} \right)\] is,
Take, \[\left( {{x}_{1}},{{y}_{1}} \right)=\left( t_{1}^{2},2{{t}_{1}} \right)\].
\[\begin{align}
& y-2{{t}_{1}}=\dfrac{-2{{t}_{1}}}{2\times 1}\left( x-t_{1}^{2} \right) \\
& \Rightarrow y-2{{t}_{1}}=-{{t}_{1}}\left( x-t_{1}^{2} \right)-(1) \\
\end{align}\]
Now let us find the equation of normal at point Q \[\left( a{{t}_{2}}^{2},2a{{t}_{2}} \right)\].
Take \[\left( {{x}_{1}},{{y}_{1}} \right)=\left( t_{1}^{2},2{{t}_{1}} \right)\] and \[\left( x,y \right)=\left( t_{2}^{2},2{{t}_{2}} \right)\].
\[\begin{align}
& 2{{t}_{2}}-2{{t}_{1}}=\dfrac{-2{{t}_{1}}}{2}\left[ t_{2}^{2}-t_{1}^{2} \right] \\
& \Rightarrow 2\left( {{t}_{2}}-{{t}_{1}} \right)=-{{t}_{1}}\left( t_{2}^{2}-t_{1}^{2} \right) \\
\end{align}\]
We know that, \[{{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)\]
\[\therefore 2\left( {{t}_{2}}-{{t}_{1}} \right)=-{{t}_{1}}\left( {{t}_{2}}-{{t}_{1}} \right)\left( {{t}_{2}}+{{t}_{1}} \right)\]
Cancel out \[\left( {{t}_{2}}-{{t}_{1}} \right)\] from both sides.
\[\therefore 2=-{{t}_{1}}\left( {{t}_{2}}+{{t}_{1}} \right)-(2)\]
Let us consider A as the vertex of the parabola. It is given that the normal chord subtends a right angle at the vertex A (0, 0). Thus we can say that \[PA\bot QA\], from the figure.
The perpendicular normal corresponds to the value that slope of PA and AQ will be (-1) i.e. \[{{m}_{1}}{{m}_{2}}=-1\].
Thus we can say that, (slope of AP) (slope of AQ) = -1
Slope of AP = \[{{m}_{1}}\]
Slope of AQ = \[{{m}_{2}}\]
We can find the slope of a line using the formula, \[m=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}\].
Where, \[\left( {{x}_{1}},{{y}_{1}} \right)=\left( 0,0 \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)=\left( t_{1}^{2},2{{t}_{1}} \right)\].
\[\therefore \] Slope of AP \[={{m}_{1}}=\dfrac{2{{t}_{1}}-0}{t_{1}^{2}-0}=\dfrac{2}{{{t}_{1}}}\]
Similarly, slope of AQ \[={{m}_{2}}=\dfrac{2{{t}_{2}}-0}{t_{2}^{2}-0}=\dfrac{2}{{{t}_{2}}}\]
\[\therefore \] (slope of PA) (slope of AQ) = -1
\[\begin{align}
& \therefore {{m}_{1}}{{m}_{2}}=-1 \\
& \dfrac{2}{{{t}_{1}}}\times \dfrac{2}{{{t}_{2}}}=-1 \\
& \Rightarrow 4=-{{t}_{1}}{{t}_{2}} \\
\end{align}\]
i.e. \[{{t}_{1}}{{t}_{2}}=-4-(3)\]
From equation (2) \[\Rightarrow 2=-{{t}_{1}}\left( {{t}_{2}}+{{t}_{1}} \right)\]
\[\Rightarrow 2=-{{t}_{1}}{{t}_{2}}-t_{1}^{2}\]
Put, \[{{t}_{1}}{{t}_{2}}=4\]
\[\begin{align}
& \Rightarrow 2=+4-t_{1}^{2} \\
& \therefore t_{1}^{2}=2 \\
& {{t}_{1}}=\sqrt{2} \\
\end{align}\]
Now, \[{{t}_{2}}=\dfrac{-4}{{{t}_{1}}}=\dfrac{-4}{\sqrt{2}}\] [rationalizing, multiply by \[\sqrt{2}\] on numerator and denominator]
\[{{t}_{2}}=\dfrac{-4\times \sqrt{2}}{\sqrt{2}\times \sqrt{2}}=\dfrac{-4\sqrt{2}}{2}=-2\sqrt{2}\]
\[\therefore {{t}_{1}}=\sqrt{2}\] and \[{{t}_{2}}=-2\sqrt{2}\].
Thus we get the coordinates of P and Q as,
Coordinates of P \[=\left( {{\left( \sqrt{2} \right)}^{2}},2\sqrt{2} \right)=\left( 2,2\sqrt{2} \right)\]
Coordinates of Q \[=\left( {{\left( -2\sqrt{2} \right)}^{2}},-4\sqrt{2} \right)=\left( 8,-4\sqrt{2} \right)\]
Thus we got coordinates as P \[\left( 2,2\sqrt{2} \right)\] and Q \[\left( 8,-4\sqrt{2} \right)\].
Thus we can find the length of a normal chord PQ by using distance formula.
Distance \[=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}\]
PQ \[=\sqrt{{{\left( 8-2 \right)}^{2}}+{{\left( -4\sqrt{2}-2\sqrt{2} \right)}^{2}}}\] \[\left\{ \begin{align}
& \because \left( {{x}_{1}},{{y}_{1}} \right)=\left( 2,2\sqrt{2} \right) \\
& \left( {{x}_{2}},{{y}_{2}} \right)=\left( 8,-4\sqrt{2} \right) \\
\end{align} \right\}\]
\[\begin{align}
& PQ=\sqrt{{{6}^{2}}+{{\left( -6\sqrt{2} \right)}^{2}}}=\sqrt{36+72} \\
& PQ=\sqrt{108}=\sqrt{6\times 6\times 3} \\
& PQ=6\sqrt{3} \\
\end{align}\]
Thus we got the length of the normal chord PQ as \[6\sqrt{3}\].
\[\therefore \] Option (a) is correct.
Note: The normal chord of parabola is any chord which is perpendicular to the axis of parabola. Here PA and QA are the lines which are perpendicular. The normal chord to parabola, whose ordinate is equal to abscissa subtends right angle at focus.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

