Answer

Verified

402.6k+ views

**Hint:**First we have to find the point of intersection of the given chord and the curve using the method of substitution. It will give us two points of intersections, which are the endpoints of the chord. Then use the formula for the distance between two points in the\[xy - \] plane to find the length of the chord using the obtained end points of the chord.

**Complete step-by-step answer:**We have given the equation of the chord \[4y = 3x + 8\] of the parabola\[{y^2} = 8x\]. We have to find the length of the chord.

Consider the given equation of chord:

\[4y = 3x + 8\]

Now, we solve the equation for\[x\]:

\[4y - 8 = 3x\]

\[x = \dfrac{{4y - 8}}{3}\] … (1)

Consider the given equation of the parabola:

\[{y^2} = 8x\]

Now, we substitute \[x = \dfrac{{4y - 8}}{3}\] into the above equation:

$\Rightarrow$ \[{y^2} = 8\left( {\dfrac{{4y - 8}}{3}} \right)\]

$\Rightarrow$ \[3{y^2} = 32y - 64\]

$\Rightarrow$ \[3{y^2} - 32y + 64 = 0\]

Factorize the expression by splitting the middle term.

\[3{y^2} - 24y - 8y + 64 = 0\]

$\Rightarrow$ \[3y\left( {y - 8} \right) - 8\left( {y - 8} \right) = 0\]

$\Rightarrow$ \[\left( {y - 8} \right)\left( {3y - 8} \right) = 0\]

Then, the obtained values of \[y\]are:

$\Rightarrow$ \[y = 8{\rm{ or }} y = \dfrac{8}{3}\]

Now, we substitute the value of \[y\] into the equation (1) and evaluate the corresponding values of\[x\].

\[x = \dfrac{{4\left( 8 \right) - 8}}{3}\]

$\Rightarrow$ \[x = \dfrac{{24}}{3}\]

$\Rightarrow$ \[x = 8\]

Similarly, \[x = \dfrac{{4\left( {\dfrac{8}{3}} \right) - 8}}{3}\]

\[x = \dfrac{{\dfrac{{32}}{3} - 8}}{3}\]

$\Rightarrow$ \[x = \dfrac{{32 - 24}}{9}\]

$\Rightarrow$ \[x = \dfrac{8}{9}\]

The obtained coordinates are \[\left( {8,8} \right)\] and \[\left( {\dfrac{8}{9},\dfrac{8}{3}} \right)\].

These coordinates are the end point of the chord. Now, we use the formula of distance between two points to find the length of the chord.

Assume \[\left( {{x_1},{y_1}} \right) = \left( {8,8} \right)\] and \[\left( {{x_2},{y_2}} \right) = \left( {\dfrac{8}{9},\dfrac{8}{3}} \right)\] , then we know that the distance between the points \[\left( {{x_1},{y_1}} \right)\]and\[\left( {{x_2},{y_2}} \right)\]is given as:

\[L = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \]

Substitute \[\left( {{x_1},{y_1}} \right) = \left( {8,8} \right)\] and \[\left( {{x_2},{y_2}} \right) = \left( {\dfrac{8}{9},\dfrac{8}{3}} \right)\] into the above formula:

$\Rightarrow$ \[L = \sqrt {{{\left( {\dfrac{8}{9} - 8} \right)}^2} + {{\left( {\dfrac{8}{3} - 8} \right)}^2}} \]

Evaluate the chord length:

\[L = \sqrt {{{\left( { - \dfrac{{64}}{9}} \right)}^2} + {{\left( { - \dfrac{{16}}{3}} \right)}^2}} \]

$\Rightarrow$ \[L = \sqrt {\dfrac{{4069}}{{81}} - \dfrac{{256}}{9}} \]

$\Rightarrow$ \[L = \sqrt {\dfrac{{4096 + 2304}}{{81}}} \]

$\Rightarrow$ \[L = \sqrt {\dfrac{{6400}}{{81}}} \]

$\Rightarrow$ \[L = \dfrac{{80}}{9}\]

Therefore, the length of the chord is \[\dfrac{{80}}{9}\] units.

**Hence, the option (c) is the correct option.**

**Note:**In the given equations, one equation is the linear equation and other one is the quadratic equation. It is easy to use the substitution method for solving the equations. If we use elimination methods then it becomes complex to find the solution.

Recently Updated Pages

When people say No pun intended what does that mea class 8 english CBSE

Name the states which share their boundary with Indias class 9 social science CBSE

Give an account of the Northern Plains of India class 9 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Advantages and disadvantages of science

10 examples of friction in our daily life

Trending doubts

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Change the following sentences into negative and interrogative class 10 english CBSE

Difference Between Plant Cell and Animal Cell

Write a letter to the principal requesting him to grant class 10 english CBSE