
The length of the arc of the parabola \[{x^2} = 4ay\] measured from the vertex to one extremity of the latus rectum is:
(A) $a\left[ {\sqrt 2 + \log \left( {1 - \sqrt 2 } \right)} \right]$
(B) $a\left[ {\sqrt 2 + \log \left( {1 + \sqrt 2 } \right)} \right]$
(C) $a\left[ {\sqrt 2 - \log \left( {1 + \sqrt 2 } \right)} \right]$
(D) $a\left[ {\sqrt 2 - \log \left( {1 - \sqrt 2 } \right)} \right]$
Answer
539.4k+ views
Hint:In the given question, we are required to find the length of the arc of the parabola \[{x^2} = 4ay\] measured from the vertex to one extremity of the latus rectum. The length of arc of the parabola from vertex to one of the extremities can be calculated by firstly finding the derivative of y and then applying the Pythagoras theorem find the length of arc by integrating the same from \[0\] to \[2a\].
Complete step by step answer:
Let A be the vertex and L be an extremity of the latus rectum so that at A$\left( {0,0} \right)$ and L$\left( {2a,a} \right)$.Now, given
\[y = \left( {\dfrac{{{x^2}}}{{4a}}} \right)\]
So, on differentiating both sides of the equation of parabola given to us in the question, we get,
\[\dfrac{{dy}}{{dx}} = \left( {\dfrac{1}{{4a}}} \right)\left( {2x} \right)\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \left( {\dfrac{x}{{2a}}} \right)\]
Hence, the length of the arc of the parabola \[{x^2} = 4ay\] measured from the vertex to one extremity of the latus rectum can now be found using the Pythagoras theorem.
Length of arc $ = \int_0^{2a} {\sqrt {1 + {{\left( {\dfrac{{dy}}{{dx}}} \right)}^2}} } dx$
Now, substituting the value of $\dfrac{{dy}}{{dx}}$ from the previously obtained equation, we get,
$ \Rightarrow \int_0^{2a} {\sqrt {1 + {{\left( {\dfrac{x}{{2a}}} \right)}^2}} } dx$
$ \Rightarrow \left( {\dfrac{1}{{2a}}} \right)\int_0^{2a} {\sqrt {{{\left( {2a} \right)}^2} + {x^2}} } dx$
Now, the integral that we need to calculate in order to find the final answer is a special form integral $\int {\sqrt {{x^2} + {a^2}} dx = \dfrac{x}{2}} \sqrt {{x^2} + {a^2}} + \dfrac{{{a^2}}}{2}\log \left( {x + \sqrt {{x^2} + {a^2}} } \right)$. So, we simplify the integral using the result of this special integral.
$ \Rightarrow \left( {\dfrac{1}{{2a}}} \right)\int_0^{2a} {\sqrt {{{\left( {2a} \right)}^2} + {x^2}} } dx = \left( {\dfrac{1}{{2a}}} \right){\left[ {\dfrac{x}{2}\sqrt {{x^2} + 4{a^2}} + \dfrac{{4{a^2}}}{2}\log \left( {x + \sqrt {{x^2} + 4{a^2}} } \right)} \right]^{2a}}_0$
Now, putting in the upper limit and lower limit of the definite integral and computing the length of arc,
$ \Rightarrow \left( {\dfrac{1}{{2a}}} \right)\left\{ {\left[ {\dfrac{{2a}}{2}\sqrt {{{\left( {2a} \right)}^2} + 4{a^2}} + \dfrac{{4{a^2}}}{2}\log \left( {2a + \sqrt {{{\left( {2a} \right)}^2} + 4{a^2}} } \right)} \right] - \left[ {\dfrac{0}{2}\sqrt {{0^2} + 4{a^2}} + \dfrac{{4{a^2}}}{2}\log \left( {0 + \sqrt {{0^2} + 4{a^2}} } \right)} \right]} \right\}$
$ \Rightarrow \left( {\dfrac{1}{{2a}}} \right)\left\{ {\left[ {a\sqrt {8{a^2}} + 2{a^2}\log \left( {2a + \sqrt {8{a^2}} } \right)} \right] - \left[ {0 + 2{a^2}\log \left( {\sqrt {4{a^2}} } \right)} \right]} \right\}$
Simplifying further, we get,
$\left( {\dfrac{1}{{2a}}} \right)\left\{ {\left[ {2\sqrt 2 {a^2} + 2{a^2}\log \left( {2a + 2\sqrt 2 a} \right)} \right] - \left[ {0 + 2{a^2}\log \left( {2a} \right)} \right]} \right\}$
$ \Rightarrow \left( {\dfrac{1}{{2a}}} \right)\left\{ {2\sqrt 2 {a^2} + 2{a^2}\log \left( {2a + 2\sqrt 2 a} \right) - 2{a^2}\log \left( {2a} \right)} \right\}$
$ \Rightarrow \left( {\dfrac{1}{{2a}}} \right)\left\{ {2\sqrt 2 {a^2} + 2{a^2}\left[ {\log \left( {2a + 2\sqrt 2 a} \right) - \log \left( {2a} \right)} \right]} \right\}$
$ \Rightarrow \left( {\dfrac{1}{{2a}}} \right)\left\{ {2\sqrt 2 {a^2} + 2{a^2}\left[ {\log \left( {1 + \sqrt 2 } \right)} \right]} \right\}$
Cancelling $2a$ in numerator and denominator, we get,
$ \therefore a\left( {\sqrt 2 + \log \left( {1 + \sqrt 2 } \right)} \right)$
Hence, the length of the arc of the parabola \[{x^2} = 4ay\] measured from the vertex to one extremity of the latus rectum is: $a\left( {\sqrt 2 + \log \left( {1 + \sqrt 2 } \right)} \right)$.
Note: The above solution represents the standard method for solving such questions that require us to find the length of an arc or length of a curve given the equation of the curve. These types of questions require knowledge of applications of derivatives and a strong grip on calculus and analytical skills.
Complete step by step answer:
Let A be the vertex and L be an extremity of the latus rectum so that at A$\left( {0,0} \right)$ and L$\left( {2a,a} \right)$.Now, given
\[y = \left( {\dfrac{{{x^2}}}{{4a}}} \right)\]
So, on differentiating both sides of the equation of parabola given to us in the question, we get,
\[\dfrac{{dy}}{{dx}} = \left( {\dfrac{1}{{4a}}} \right)\left( {2x} \right)\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \left( {\dfrac{x}{{2a}}} \right)\]
Hence, the length of the arc of the parabola \[{x^2} = 4ay\] measured from the vertex to one extremity of the latus rectum can now be found using the Pythagoras theorem.
Length of arc $ = \int_0^{2a} {\sqrt {1 + {{\left( {\dfrac{{dy}}{{dx}}} \right)}^2}} } dx$
Now, substituting the value of $\dfrac{{dy}}{{dx}}$ from the previously obtained equation, we get,
$ \Rightarrow \int_0^{2a} {\sqrt {1 + {{\left( {\dfrac{x}{{2a}}} \right)}^2}} } dx$
$ \Rightarrow \left( {\dfrac{1}{{2a}}} \right)\int_0^{2a} {\sqrt {{{\left( {2a} \right)}^2} + {x^2}} } dx$
Now, the integral that we need to calculate in order to find the final answer is a special form integral $\int {\sqrt {{x^2} + {a^2}} dx = \dfrac{x}{2}} \sqrt {{x^2} + {a^2}} + \dfrac{{{a^2}}}{2}\log \left( {x + \sqrt {{x^2} + {a^2}} } \right)$. So, we simplify the integral using the result of this special integral.
$ \Rightarrow \left( {\dfrac{1}{{2a}}} \right)\int_0^{2a} {\sqrt {{{\left( {2a} \right)}^2} + {x^2}} } dx = \left( {\dfrac{1}{{2a}}} \right){\left[ {\dfrac{x}{2}\sqrt {{x^2} + 4{a^2}} + \dfrac{{4{a^2}}}{2}\log \left( {x + \sqrt {{x^2} + 4{a^2}} } \right)} \right]^{2a}}_0$
Now, putting in the upper limit and lower limit of the definite integral and computing the length of arc,
$ \Rightarrow \left( {\dfrac{1}{{2a}}} \right)\left\{ {\left[ {\dfrac{{2a}}{2}\sqrt {{{\left( {2a} \right)}^2} + 4{a^2}} + \dfrac{{4{a^2}}}{2}\log \left( {2a + \sqrt {{{\left( {2a} \right)}^2} + 4{a^2}} } \right)} \right] - \left[ {\dfrac{0}{2}\sqrt {{0^2} + 4{a^2}} + \dfrac{{4{a^2}}}{2}\log \left( {0 + \sqrt {{0^2} + 4{a^2}} } \right)} \right]} \right\}$
$ \Rightarrow \left( {\dfrac{1}{{2a}}} \right)\left\{ {\left[ {a\sqrt {8{a^2}} + 2{a^2}\log \left( {2a + \sqrt {8{a^2}} } \right)} \right] - \left[ {0 + 2{a^2}\log \left( {\sqrt {4{a^2}} } \right)} \right]} \right\}$
Simplifying further, we get,
$\left( {\dfrac{1}{{2a}}} \right)\left\{ {\left[ {2\sqrt 2 {a^2} + 2{a^2}\log \left( {2a + 2\sqrt 2 a} \right)} \right] - \left[ {0 + 2{a^2}\log \left( {2a} \right)} \right]} \right\}$
$ \Rightarrow \left( {\dfrac{1}{{2a}}} \right)\left\{ {2\sqrt 2 {a^2} + 2{a^2}\log \left( {2a + 2\sqrt 2 a} \right) - 2{a^2}\log \left( {2a} \right)} \right\}$
$ \Rightarrow \left( {\dfrac{1}{{2a}}} \right)\left\{ {2\sqrt 2 {a^2} + 2{a^2}\left[ {\log \left( {2a + 2\sqrt 2 a} \right) - \log \left( {2a} \right)} \right]} \right\}$
$ \Rightarrow \left( {\dfrac{1}{{2a}}} \right)\left\{ {2\sqrt 2 {a^2} + 2{a^2}\left[ {\log \left( {1 + \sqrt 2 } \right)} \right]} \right\}$
Cancelling $2a$ in numerator and denominator, we get,
$ \therefore a\left( {\sqrt 2 + \log \left( {1 + \sqrt 2 } \right)} \right)$
Hence, the length of the arc of the parabola \[{x^2} = 4ay\] measured from the vertex to one extremity of the latus rectum is: $a\left( {\sqrt 2 + \log \left( {1 + \sqrt 2 } \right)} \right)$.
Note: The above solution represents the standard method for solving such questions that require us to find the length of an arc or length of a curve given the equation of the curve. These types of questions require knowledge of applications of derivatives and a strong grip on calculus and analytical skills.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

