
The length of diagonal of a cube is 17.32 cm, find the volume of the cube.
Answer
573k+ views
Hint: First, we need to find the length of the diagonal of a cube in terms of its side. Next, find the side of the cube and hence find the volume of the cube.
Complete step by step answer:
The formula of the length \[D\] of the diagonal of the cube is shown below.
\[D = \sqrt 3 a\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,......\left( 1 \right)\]
Here, \[a\] is the length of the side of the cube.
Since, the diagonal of the cube is 17.32 cm, substitute 17.32 for \[D\] in equation (1) to obtain the length of the side of the cube.
\[
\,\,\,\,\,\,17.32 = \sqrt 3 a \\
\Rightarrow a = \dfrac{{17.32}}{{\sqrt 3 }} \\
\Rightarrow a = \dfrac{{17.32}}{{1.732}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {\sqrt 3 = 1.732} \right) \\
\Rightarrow a = 10cm \\
\]
The formula for the volume \[V\] of the cube having side length \[a\] is shown below.
\[V = {a^3}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,......\left( 2 \right)\]
Substitute, 10 for \[a\] in equation (2) to obtain the volume of the cube as follows:
\[
\,\,\,\,\,\,V = {\left( {10} \right)^3} \\
\Rightarrow V = 1000c{m^3} \\
\]
Thus, the volume of the cube is \[1000c{m^3}\].
Note: We can use Pythagoras theorem to obtain the length of the diagonal of the cube. In the cube all the diagonals are of equal length. There are six face diagonals of the cube having length 1.414 times its side length.
Complete step by step answer:
The formula of the length \[D\] of the diagonal of the cube is shown below.
\[D = \sqrt 3 a\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,......\left( 1 \right)\]
Here, \[a\] is the length of the side of the cube.
Since, the diagonal of the cube is 17.32 cm, substitute 17.32 for \[D\] in equation (1) to obtain the length of the side of the cube.
\[
\,\,\,\,\,\,17.32 = \sqrt 3 a \\
\Rightarrow a = \dfrac{{17.32}}{{\sqrt 3 }} \\
\Rightarrow a = \dfrac{{17.32}}{{1.732}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {\sqrt 3 = 1.732} \right) \\
\Rightarrow a = 10cm \\
\]
The formula for the volume \[V\] of the cube having side length \[a\] is shown below.
\[V = {a^3}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,......\left( 2 \right)\]
Substitute, 10 for \[a\] in equation (2) to obtain the volume of the cube as follows:
\[
\,\,\,\,\,\,V = {\left( {10} \right)^3} \\
\Rightarrow V = 1000c{m^3} \\
\]
Thus, the volume of the cube is \[1000c{m^3}\].
Note: We can use Pythagoras theorem to obtain the length of the diagonal of the cube. In the cube all the diagonals are of equal length. There are six face diagonals of the cube having length 1.414 times its side length.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

