Answer
Verified
363.6k+ views
Hint: A basic pendulum is made up of a mass m suspended from a string with a length L and a pivot point P. When the pendulum is displaced to an original angle and released, it will swing back and forth with intermittent motion at the normal frequency.
Complete step by step answer:
In physics, simple harmonic motion is described as repeated movement back and forth through an equilibrium, or centre, location with the maximum displacement on one side equal to the maximum displacement on the other side. Each full vibration has the same time interval.
Simple harmonic motion can be used to model a multitude of motions, but it is best exemplified by the oscillation of a mass on a spring as it is subjected to Hooke's law's linear elastic restoring force. The motion has a single resonant frequency and is sinusoidal in time.
Other phenomenon, such as the motion of a single pendulum, can be modelled using simple harmonic motion, but in order for it to be a reliable model, the net force on the point at the end of the pendulum must be equal to the displacement (and even so, it is only a good approximation when the angle of the swing is small; see small-angle approximation).
Given, \[\dfrac{{{l_2}}}{{{l_1}}} = 1.21\]
The time period of the simple pendulum executing simple harmonic motion is given by the formula
\[{\bf{T}} = 2\pi \sqrt {\dfrac{1}{{\;{\rm{g}}}}} \]
We deduce
\[T \propto \sqrt l \]
From given
\[\dfrac{{{{\bf{T}}_2}}}{{{{\bf{T}}_1}}} = \sqrt {\dfrac{{{{\bf{l}}_2}}}{{{{\bf{l}}_1}}}} = \sqrt {{\bf{1}}.{\bf{21}}} \]
\[\Rightarrow {{\bf{T}}_2} = {\bf{1}}.{\bf{1}}{{\bf{T}}_{\bf{2}}}\]
The % increase in time period is given as = \[\dfrac{{{{\bf{T}}_2} - {{\bf{T}}_1}}}{{{{\bf{T}}_1}}} \times {\bf{100}}\]
\[\therefore {\rm{ increase = }}\dfrac{{{\bf{1}}.{\bf{1}}{{\bf{T}}_1} - {{\bf{T}}_1}}}{{{{\bf{T}}_1}}} \times {\bf{100}} = {\bf{10}}\% \]
Hence, option D is correct.
Note: Simple harmonic motion is a form of periodic motion in dynamics and physics in which the restoring force on a moving object is directly proportional to the degree of the object's displacement and operates towards the object's equilibrium state. It causes an oscillation that, if not interrupted by friction or other energy dissipation, will last forever.
Complete step by step answer:
In physics, simple harmonic motion is described as repeated movement back and forth through an equilibrium, or centre, location with the maximum displacement on one side equal to the maximum displacement on the other side. Each full vibration has the same time interval.
Simple harmonic motion can be used to model a multitude of motions, but it is best exemplified by the oscillation of a mass on a spring as it is subjected to Hooke's law's linear elastic restoring force. The motion has a single resonant frequency and is sinusoidal in time.
Other phenomenon, such as the motion of a single pendulum, can be modelled using simple harmonic motion, but in order for it to be a reliable model, the net force on the point at the end of the pendulum must be equal to the displacement (and even so, it is only a good approximation when the angle of the swing is small; see small-angle approximation).
Given, \[\dfrac{{{l_2}}}{{{l_1}}} = 1.21\]
The time period of the simple pendulum executing simple harmonic motion is given by the formula
\[{\bf{T}} = 2\pi \sqrt {\dfrac{1}{{\;{\rm{g}}}}} \]
We deduce
\[T \propto \sqrt l \]
From given
\[\dfrac{{{{\bf{T}}_2}}}{{{{\bf{T}}_1}}} = \sqrt {\dfrac{{{{\bf{l}}_2}}}{{{{\bf{l}}_1}}}} = \sqrt {{\bf{1}}.{\bf{21}}} \]
\[\Rightarrow {{\bf{T}}_2} = {\bf{1}}.{\bf{1}}{{\bf{T}}_{\bf{2}}}\]
The % increase in time period is given as = \[\dfrac{{{{\bf{T}}_2} - {{\bf{T}}_1}}}{{{{\bf{T}}_1}}} \times {\bf{100}}\]
\[\therefore {\rm{ increase = }}\dfrac{{{\bf{1}}.{\bf{1}}{{\bf{T}}_1} - {{\bf{T}}_1}}}{{{{\bf{T}}_1}}} \times {\bf{100}} = {\bf{10}}\% \]
Hence, option D is correct.
Note: Simple harmonic motion is a form of periodic motion in dynamics and physics in which the restoring force on a moving object is directly proportional to the degree of the object's displacement and operates towards the object's equilibrium state. It causes an oscillation that, if not interrupted by friction or other energy dissipation, will last forever.
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
How do you graph the function fx 4x class 9 maths CBSE
Select the word that is correctly spelled a Twelveth class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE