
The length of a simple pendulum executing simple harmonic motion is increased by 21%. The percentage increase in the time period of the pendulum of increased length is.
A. 11%
B. 21%
C. 10.5%
D. 10%
Answer
438.9k+ views
1 likes
Hint: A basic pendulum is made up of a mass m suspended from a string with a length L and a pivot point P. When the pendulum is displaced to an original angle and released, it will swing back and forth with intermittent motion at the normal frequency.
Complete step by step answer:
In physics, simple harmonic motion is described as repeated movement back and forth through an equilibrium, or centre, location with the maximum displacement on one side equal to the maximum displacement on the other side. Each full vibration has the same time interval.
Simple harmonic motion can be used to model a multitude of motions, but it is best exemplified by the oscillation of a mass on a spring as it is subjected to Hooke's law's linear elastic restoring force. The motion has a single resonant frequency and is sinusoidal in time.
Other phenomenon, such as the motion of a single pendulum, can be modelled using simple harmonic motion, but in order for it to be a reliable model, the net force on the point at the end of the pendulum must be equal to the displacement (and even so, it is only a good approximation when the angle of the swing is small; see small-angle approximation).
Given,
The time period of the simple pendulum executing simple harmonic motion is given by the formula
We deduce
From given
The % increase in time period is given as =
Hence, option D is correct.
Note: Simple harmonic motion is a form of periodic motion in dynamics and physics in which the restoring force on a moving object is directly proportional to the degree of the object's displacement and operates towards the object's equilibrium state. It causes an oscillation that, if not interrupted by friction or other energy dissipation, will last forever.
Complete step by step answer:
In physics, simple harmonic motion is described as repeated movement back and forth through an equilibrium, or centre, location with the maximum displacement on one side equal to the maximum displacement on the other side. Each full vibration has the same time interval.
Simple harmonic motion can be used to model a multitude of motions, but it is best exemplified by the oscillation of a mass on a spring as it is subjected to Hooke's law's linear elastic restoring force. The motion has a single resonant frequency and is sinusoidal in time.
Other phenomenon, such as the motion of a single pendulum, can be modelled using simple harmonic motion, but in order for it to be a reliable model, the net force on the point at the end of the pendulum must be equal to the displacement (and even so, it is only a good approximation when the angle of the swing is small; see small-angle approximation).
Given,
The time period of the simple pendulum executing simple harmonic motion is given by the formula
We deduce
From given
The % increase in time period is given as =
Hence, option D is correct.
Note: Simple harmonic motion is a form of periodic motion in dynamics and physics in which the restoring force on a moving object is directly proportional to the degree of the object's displacement and operates towards the object's equilibrium state. It causes an oscillation that, if not interrupted by friction or other energy dissipation, will last forever.
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

Which of the following blood vessels in the circulatory class 11 biology CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Which of the following is nitrogenfixing algae a Nostoc class 11 biology CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
