
The length of a rectangular blackboard is 8 cm more than its breadth. If its length is increased by 7 cm and breadth is decreased by 4 cm, its area remains unchanged. Find the length and breadth of the rectangular blackboard.
A.28cm, 20cm
B.20cm, 24cm
C.24cm, 16cm
D.28cm, 16cm
Answer
545.7k+ views
Hint: The area of rectangle having length ‘x’ units and breadth ‘y’ units is ‘xy’ square units.
If length is increased by ‘m’ units and breadth is decreased by ‘n’ units and let’s say area is increased by ‘p’ units, then we can represent this as
$(x + m)(y - n) = xy + p$
Complete step-by-step answer:
Let length of rectangular blackboard be ‘x’ cm and breadth be ‘y’ cm
Now, first condition says that length of a rectangular blackboard is 8 cm more than its breadth which is written as : $x = y + 8$ --1
Second condition says that length is increased by 7 cm and breadth is decreased by 4 cm, its area remains unchanged which can be written as $(x + 7)(y - 4) = xy$
Put value of ‘x’ from equation 1; we get:
$\Rightarrow$ $(y + 8 + 7)(y - 4) = (y + 8)y$
$\Rightarrow$ $(y + 15)(y - 4) = (y + 8)y$
Now, multiply brackets, which will give us:
$\Rightarrow$ ${y^2} + 11y - 60 = {y^2} + 8y$
Cancelling ${x^2}$ on both sides, we get
$\Rightarrow$ $11y - 60 = 8y$
Which gives us value of $y = 20$
Put this value of ‘y’ in equation 1, we get;
$\Rightarrow$ $x = 20 + 8 = 28$
So, length of rectangular blackboard is 28 cm and breadth of rectangular blackboard is 20 cm
So, option (A) is correct.
Note: Every linear equation with two variables represents a line graphically such that each solution (x,y) of a linear equation $ax + by + c = 0$ corresponds to a point on the line representing the equation.
If length is increased by ‘m’ units and breadth is decreased by ‘n’ units and let’s say area is increased by ‘p’ units, then we can represent this as
$(x + m)(y - n) = xy + p$
Complete step-by-step answer:
Let length of rectangular blackboard be ‘x’ cm and breadth be ‘y’ cm
Now, first condition says that length of a rectangular blackboard is 8 cm more than its breadth which is written as : $x = y + 8$ --1
Second condition says that length is increased by 7 cm and breadth is decreased by 4 cm, its area remains unchanged which can be written as $(x + 7)(y - 4) = xy$
Put value of ‘x’ from equation 1; we get:
$\Rightarrow$ $(y + 8 + 7)(y - 4) = (y + 8)y$
$\Rightarrow$ $(y + 15)(y - 4) = (y + 8)y$
Now, multiply brackets, which will give us:
$\Rightarrow$ ${y^2} + 11y - 60 = {y^2} + 8y$
Cancelling ${x^2}$ on both sides, we get
$\Rightarrow$ $11y - 60 = 8y$
Which gives us value of $y = 20$
Put this value of ‘y’ in equation 1, we get;
$\Rightarrow$ $x = 20 + 8 = 28$
So, length of rectangular blackboard is 28 cm and breadth of rectangular blackboard is 20 cm
So, option (A) is correct.
Note: Every linear equation with two variables represents a line graphically such that each solution (x,y) of a linear equation $ax + by + c = 0$ corresponds to a point on the line representing the equation.
Recently Updated Pages
The height of a solid metal cylinder is 20cm Its r-class-10-maths-ICSE

If a train crossed a pole at a speed of 60kmhr in 30 class 10 physics CBSE

Name the Writs that the High Courts are empowered to class 10 social science CBSE

A tower is 5sqrt 3 meter high Find the angle of el-class-10-maths-CBSE

Immediate cause of variations of A Mutations B Environmental class 10 biology CBSE

A rectangular container whose base is a square of side class 10 maths CBSE

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

What is 1 divided by 0 class 8 maths CBSE

Advantages and disadvantages of science

Who commanded the Hector the first British trading class 8 social science CBSE

The past tense of Cut is Cutted A Yes B No class 8 english CBSE

Summary of the poem Where the Mind is Without Fear class 8 english CBSE

