
The length of a minute hand of a clock is 4 cm. Find the displacement and average velocity of the tip of the minute hand when it moves during a time interval from
(a) 3:15 pm to 3:30 pm (b) 4:15 pm to 4:45 pm.
A. (a) $\dfrac{{\sqrt 2 }}{{225}}\;{\rm{cm}}{{\rm{s}}^{ - 1}}$ (b) $\dfrac{2}{{225}}\;{\rm{cm}}{{\rm{s}}^{ - 1}}$
B. (a) $\dfrac{{\sqrt 3 }}{{225}}\;{\rm{cm}}{{\rm{s}}^{ - 1}}$ (b) $\dfrac{1}{{225}}\;{\rm{cm}}{{\rm{s}}^{ - 1}}$
C.(a) $\dfrac{{\sqrt 2 }}{{225}}\;{\rm{cm}}{{\rm{s}}^{ - 1}}$ (b) $\dfrac{1}{{225}}\;{\rm{cm}}{{\rm{s}}^{ - 1}}$
D. (a) $\dfrac{{\sqrt {12} }}{{225}}\;{\rm{cm}}{{\rm{s}}^{ - 1}}$ (b) $\dfrac{2}{{225}}\;{\rm{cm}}{{\rm{s}}^{ - 1}}$
Answer
572.1k+ views
Hint: The expression of the average velocity of the tip can be determined by dividing the displacement occurs in the position of the minute hand of the clock between its initial and final position with the total time taken by the minute hand of the clock.
Complete step by step solution:
Given:
The length of the minute hand of a clock is $l = 4\;{\rm{cm}}$.
(a)
The expression of the displacement of the minute hand is,
$D = \sqrt {{l^2} + {l^2}} $
Here $D$ is the displacement of the minute hand.
Substitute the value in the above expression
$\begin{array}{l}
D = \sqrt {4\;{\rm{cm}} + \;4\;{\rm{cm}}} \\
D = \sqrt 8 \;{\rm{cm}}\\
D = 4\sqrt 2 \;{\rm{cm}}
\end{array}$
The expression of the average velocity of the minute hand is,
${v_{avg}} = \dfrac{d}{t}$
Here $d$ is the displacement and $t$ is the total time.
Substitute the values in the above expression
$\begin{array}{l}
{v_{avg}} = \dfrac{{4\sqrt 2 \;{\rm{cm}}}}{{15\;{\rm{min}}\; \times \dfrac{{60\;{\rm{s}}}}{{\;{\rm{1 min}}}}}}\\
{v_{avg}} = \dfrac{{4\sqrt 2 \;{\rm{cm}}}}{{900\;{\rm{s}}}}\\
{v_{avg}} = {v_{avg}} = \dfrac{{\sqrt 2 \;}}{{225\;}}{\rm{cm}}{{\rm{s}}^{ - 1}}
\end{array}$
(b)
The expression of the displacement of the minute hand is,
$D = 2l$
Substitute the value in the above expression
$\begin{array}{l}
D = 2\left( {4\;{\rm{cm}}} \right)\\
D = 8\;{\rm{cm}}
\end{array}$
The expression of the average velocity of the minute hand is,
${v_{avg}} = \dfrac{d}{t}$
Substitute the values in the above expression
$\begin{array}{l}
{v_{avg}} = \dfrac{{8\;{\rm{cm}}}}{{30\;{\rm{min}}\; \times \dfrac{{60\;{\rm{s}}}}{{\;{\rm{1 min}}}}}}\\
{v_{avg}} = \dfrac{{8\;{\rm{cm}}}}{{1800\;{\rm{s}}}}\\
{v_{avg}} = \dfrac{1}{{225}}\;{\rm{cm}}{{\rm{s}}^{ - 1}}
\end{array}$
Therefore, the option (C) is the correct answer that is (a) $\dfrac{{\sqrt 2 }}{{225}}\;{\rm{cm}}{{\rm{s}}^{ - 1}}$ (b) $\dfrac{1}{{225}}\;{\rm{cm}}{{\rm{s}}^{ - 1}}$.
Note: For the calculation of the displacement in part (a), use the concept of Pythagoras and in part (b), minute hand makes 180 degree between its initial and final position, so for the displacement calculation just double the length of minute hand.
Complete step by step solution:
Given:
The length of the minute hand of a clock is $l = 4\;{\rm{cm}}$.
(a)
The expression of the displacement of the minute hand is,
$D = \sqrt {{l^2} + {l^2}} $
Here $D$ is the displacement of the minute hand.
Substitute the value in the above expression
$\begin{array}{l}
D = \sqrt {4\;{\rm{cm}} + \;4\;{\rm{cm}}} \\
D = \sqrt 8 \;{\rm{cm}}\\
D = 4\sqrt 2 \;{\rm{cm}}
\end{array}$
The expression of the average velocity of the minute hand is,
${v_{avg}} = \dfrac{d}{t}$
Here $d$ is the displacement and $t$ is the total time.
Substitute the values in the above expression
$\begin{array}{l}
{v_{avg}} = \dfrac{{4\sqrt 2 \;{\rm{cm}}}}{{15\;{\rm{min}}\; \times \dfrac{{60\;{\rm{s}}}}{{\;{\rm{1 min}}}}}}\\
{v_{avg}} = \dfrac{{4\sqrt 2 \;{\rm{cm}}}}{{900\;{\rm{s}}}}\\
{v_{avg}} = {v_{avg}} = \dfrac{{\sqrt 2 \;}}{{225\;}}{\rm{cm}}{{\rm{s}}^{ - 1}}
\end{array}$
(b)
The expression of the displacement of the minute hand is,
$D = 2l$
Substitute the value in the above expression
$\begin{array}{l}
D = 2\left( {4\;{\rm{cm}}} \right)\\
D = 8\;{\rm{cm}}
\end{array}$
The expression of the average velocity of the minute hand is,
${v_{avg}} = \dfrac{d}{t}$
Substitute the values in the above expression
$\begin{array}{l}
{v_{avg}} = \dfrac{{8\;{\rm{cm}}}}{{30\;{\rm{min}}\; \times \dfrac{{60\;{\rm{s}}}}{{\;{\rm{1 min}}}}}}\\
{v_{avg}} = \dfrac{{8\;{\rm{cm}}}}{{1800\;{\rm{s}}}}\\
{v_{avg}} = \dfrac{1}{{225}}\;{\rm{cm}}{{\rm{s}}^{ - 1}}
\end{array}$
Therefore, the option (C) is the correct answer that is (a) $\dfrac{{\sqrt 2 }}{{225}}\;{\rm{cm}}{{\rm{s}}^{ - 1}}$ (b) $\dfrac{1}{{225}}\;{\rm{cm}}{{\rm{s}}^{ - 1}}$.
Note: For the calculation of the displacement in part (a), use the concept of Pythagoras and in part (b), minute hand makes 180 degree between its initial and final position, so for the displacement calculation just double the length of minute hand.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

