
The $\left( \sec A+\tan A-1 \right)\left( \sec A-\tan A+1 \right)-2\tan A$ is equal to
A. $\sec A$
B. $2\sec A$
C. 0
D. 2
Answer
487.5k+ views
Hint: We use the identity formula of $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$ assuming $a=\sec A;b=\tan A-1$. Then we simplify the whole expression and use the trigonometric formula of ${{\sec }^{2}}A={{\tan }^{2}}A+1$ to find the final solution.
Complete step by step answer:
We first multiply the $\left( \sec A+\tan A-1 \right)\left( \sec A-\tan A+1 \right)$ part by using the identity formula of $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$. In this case we assume $a=\sec A;b=\tan A-1$. Therefore,
$\left( \sec A+\tan A-1 \right)\left( \sec A-\tan A+1 \right) ={{\left( \sec A \right)}^{2}}-{{\left( \tan A-1 \right)}^{2}} $
Now we simplify the whole expression
$\left( \sec A+\tan A-1 \right)\left( \sec A-\tan A+1 \right)-2\tan A ={{\left( \sec A \right)}^{2}}-{{\left( \tan A-1 \right)}^{2}}-2\tan A \\
\Rightarrow \left( \sec A+\tan A-1 \right)\left( \sec A-\tan A+1 \right)-2\tan A ={{\sec }^{2}}A-{{\tan }^{2}}A-1+2\tan A-2\tan A \\
\Rightarrow \left( \sec A+\tan A-1 \right)\left( \sec A-\tan A+1 \right)-2\tan A ={{\sec }^{2}}A-{{\tan }^{2}}A-1 \\ $
Now we use the trigonometric formula of ${{\sec }^{2}}A={{\tan }^{2}}A+1$. We get
${{\sec }^{2}}A-{{\tan }^{2}}A-1 ={{\tan }^{2}}A+1-{{\tan }^{2}}A-1 \\
\therefore {{\sec }^{2}}A-{{\tan }^{2}}A-1 =0 $
Therefore, $\left( \sec A+\tan A-1 \right)\left( \sec A-\tan A+1 \right)-2\tan A=0$.
Hence, the correct option is C.
Note:The identity formula of ${{\sec }^{2}}A={{\tan }^{2}}A+1$ is derived from the relation between ${{\sin }^{2}}A+{{\cos }^{2}}A=1$ and dividing it with ${{\cos }^{2}}A$. The assumption of $a=\sec A;b=\tan A-1$ can also be taken as $a=\sec A;b=1-\tan A$ as the square form omits the negative sign.
Complete step by step answer:
We first multiply the $\left( \sec A+\tan A-1 \right)\left( \sec A-\tan A+1 \right)$ part by using the identity formula of $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$. In this case we assume $a=\sec A;b=\tan A-1$. Therefore,
$\left( \sec A+\tan A-1 \right)\left( \sec A-\tan A+1 \right) ={{\left( \sec A \right)}^{2}}-{{\left( \tan A-1 \right)}^{2}} $
Now we simplify the whole expression
$\left( \sec A+\tan A-1 \right)\left( \sec A-\tan A+1 \right)-2\tan A ={{\left( \sec A \right)}^{2}}-{{\left( \tan A-1 \right)}^{2}}-2\tan A \\
\Rightarrow \left( \sec A+\tan A-1 \right)\left( \sec A-\tan A+1 \right)-2\tan A ={{\sec }^{2}}A-{{\tan }^{2}}A-1+2\tan A-2\tan A \\
\Rightarrow \left( \sec A+\tan A-1 \right)\left( \sec A-\tan A+1 \right)-2\tan A ={{\sec }^{2}}A-{{\tan }^{2}}A-1 \\ $
Now we use the trigonometric formula of ${{\sec }^{2}}A={{\tan }^{2}}A+1$. We get
${{\sec }^{2}}A-{{\tan }^{2}}A-1 ={{\tan }^{2}}A+1-{{\tan }^{2}}A-1 \\
\therefore {{\sec }^{2}}A-{{\tan }^{2}}A-1 =0 $
Therefore, $\left( \sec A+\tan A-1 \right)\left( \sec A-\tan A+1 \right)-2\tan A=0$.
Hence, the correct option is C.
Note:The identity formula of ${{\sec }^{2}}A={{\tan }^{2}}A+1$ is derived from the relation between ${{\sin }^{2}}A+{{\cos }^{2}}A=1$ and dividing it with ${{\cos }^{2}}A$. The assumption of $a=\sec A;b=\tan A-1$ can also be taken as $a=\sec A;b=1-\tan A$ as the square form omits the negative sign.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Which is the Longest Railway Platform in the world?

India Manned Space Mission Launch Target Month and Year 2025 Update

Which of the following pairs is correct?

The Turko-Afghan rule in India lasted for about?

Who wrote the novel "Pride and Prejudice"?

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which type of resource is iron ore A Renewable B Biotic class 11 social science CBSE

10 examples of friction in our daily life

Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

