
The largest integer for which \[\dfrac{{{{\left( {n + 1} \right)}^2}}}{{n + 23}}\]is also an integer is
A. Greater than 470
B. Less than 440
C. Between 455 and 470
D. Between 440 and 455
Answer
589.5k+ views
Hint: We need to find the value of n for which the value of the expression is an integer. So we can first equate the expression to a variable k and form a quadratic equation in n, as n is an integer, the discriminant of the equation will be a perfect square. So we can equate it to another variable t. It also forms a quadratic equation. Its discriminant will be a perfect square and can be equated to another variable a. Then we can solve for a and t using factorization. Then we can solve for k using t and solve for n using k. Then we can compare the value of n with the options to get the correct option.
Complete step by step Answer:
We need to find the value of integer n where \[\dfrac{{{{\left( {n + 1} \right)}^2}}}{{n + 23}}\]is also an integer.
So, we can assume \[\dfrac{{{{\left( {n + 1} \right)}^2}}}{{n + 23}} = k\] where k is an integer.
We can multiply the above equation with $n + 23$on both sides.
\[ \Rightarrow {\left( {n + 1} \right)^2} = k\left( {n + 23} \right)\]
We can expand the square using the identity, ${\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}$.
\[ \Rightarrow {n^2} + 2n + 1 = kn + 23k\]
We rearrange it to a quadratic equation.
\[ \Rightarrow {n^2} + \left( {2 - k} \right)n + 1 - 23k = 0\]
We can find the value of n using the quadratic formula.
$ \Rightarrow n = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
On substituting the values, we get,
$ \Rightarrow n = \dfrac{{ - \left( {2 - k} \right) \pm \sqrt {{{\left( {2 - k} \right)}^2} - 4 \times 1 \times \left( {1 - 23k} \right)} }}{2}$
On simplification, we get,
$ \Rightarrow n = \dfrac{{k - 2 \pm \sqrt {4 + {k^2} - 4k - 4 + 92k} }}{2}$
$ \Rightarrow n = \dfrac{{k - 2 \pm \sqrt {{k^2} + 88k} }}{2}$
As k is a positive integer, n will become an integer only if ${k^2} + 88k$ is a perfect square.
So we can write,
${k^2} + 88k = {t^2}$where t is an integer.
${k^2} + 88k - {t^2} = 0$
By using quadratic formula, we get,
$ \Rightarrow k = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
On substituting the values, we get,
$ \Rightarrow k = \dfrac{{ - 88 \pm \sqrt {{{\left( {88} \right)}^2} - 4 \times 1 \times - {t^2}} }}{2}$
We can divide by 4 inside the radicle and by 2 on other terms,
$ \Rightarrow k = - 44 \pm \sqrt {{{\left( {44} \right)}^2} + {t^2}} $
As, k is positive, the root will be positive,
$ \Rightarrow k = - 44 + \sqrt {{{\left( {44} \right)}^2} + {t^2}} $
As k is an integer ${\left( {44} \right)^2} + {t^2}$will be perfect square.
So we can write,
${\left( {44} \right)^2} + {t^2} = {a^2}$
\[ \Rightarrow \]${\left( {44} \right)^2} = {a^2} - {t^2}$
On factorising using the relation ${a^2} - {t^2} = \left( {a + t} \right)\left( {a - t} \right)$, we get,
\[ \Rightarrow \]$44 \times 44 = \left( {a + t} \right)\left( {a - t} \right)$
We can factorise$44 \times 44$,
$44 \times 44 = 2 \times 2 \times 2 \times 2 \times 11 \times 11$
\[ \Rightarrow \]$44 \times 44 = \left( {2 \times 2 \times 2 \times 11 \times 11} \right) \times \left( 2 \right)$
\[ \Rightarrow \]$44 \times 44 = 968 \times 2$
Thus $\left( {a + t} \right)\left( {a - t} \right) = 968 \times 2$
\[ \Rightarrow \]$\left( {a + t} \right) = 968$ and $\left( {a - t} \right) = 2$
By solving, we get,
\[
\,\,\,\,\,\,\,\,\left( {a + t} \right) = 968 \\
\left( - \right)\underline {\left( {a - t} \right) = \,\,\,\,\,\,\,\,2} \\
\,\,\,\,\,\,\,\,\,\,0 + 2t = 966 \\
\]
$ \Rightarrow t = \dfrac{{966}}{2} = 483$
On substituting the value of t in $k = - 44 + \sqrt {{{\left( {44} \right)}^2} + {t^2}} $, we get,
$ \Rightarrow k = - 44 + \sqrt {{{\left( {44} \right)}^2} + {{\left( {483} \right)}^2}} $
On squaring we get,
$ \Rightarrow k = - 44 + \sqrt {1936 + 233289} $
On adding we get,
$ \Rightarrow k = - 44 + \sqrt {235225} $
On taking root we get,
$ \Rightarrow k = - 44 + 485$
On simplification we get,
$ \Rightarrow k = 441$
Now, on substituting the value of k in $n = \dfrac{{k - 2 \pm \sqrt {{k^2} + 88k} }}{2}$, we get,
$ \Rightarrow n = \dfrac{{441 - 2 \pm \sqrt {{{441}^2} + 88 \times 441} }}{2}$
On simplification we get,
$ \Rightarrow n = \dfrac{{439 + \sqrt {19481 + 38808} }}{2}$
On adding we get,
$ \Rightarrow n = \dfrac{{439 \pm \sqrt {233289} }}{2}$
On taking positive square root we get,
$ \Rightarrow n = \dfrac{{439 + 483}}{2}$
On solving further we get,
$ \Rightarrow n = \dfrac{{922}}{2} = 461$
So the required integer is 461.
Therefore the correct answer is option C.
Note: We use the concept of a quadratic equation and the quadratic formula to solve this problem. For the solution of a quadratic equation to be a rational number, its discriminant must be a perfect square. For a quadratic equation of the form $a{x^2} + bx + c = 0$, its discriminant is given by the equation, $D = {b^2} - 4ac$ and its solution is given by$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$. In this question, we only took the positive roots as the largest integer will be positive and terms inside the square root must be positive. After finding the factors of $44 \times 44$, we must only select the factors which give integer values for all the variables. For that, we can try each of the factors starting with the highest factor.
Complete step by step Answer:
We need to find the value of integer n where \[\dfrac{{{{\left( {n + 1} \right)}^2}}}{{n + 23}}\]is also an integer.
So, we can assume \[\dfrac{{{{\left( {n + 1} \right)}^2}}}{{n + 23}} = k\] where k is an integer.
We can multiply the above equation with $n + 23$on both sides.
\[ \Rightarrow {\left( {n + 1} \right)^2} = k\left( {n + 23} \right)\]
We can expand the square using the identity, ${\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}$.
\[ \Rightarrow {n^2} + 2n + 1 = kn + 23k\]
We rearrange it to a quadratic equation.
\[ \Rightarrow {n^2} + \left( {2 - k} \right)n + 1 - 23k = 0\]
We can find the value of n using the quadratic formula.
$ \Rightarrow n = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
On substituting the values, we get,
$ \Rightarrow n = \dfrac{{ - \left( {2 - k} \right) \pm \sqrt {{{\left( {2 - k} \right)}^2} - 4 \times 1 \times \left( {1 - 23k} \right)} }}{2}$
On simplification, we get,
$ \Rightarrow n = \dfrac{{k - 2 \pm \sqrt {4 + {k^2} - 4k - 4 + 92k} }}{2}$
$ \Rightarrow n = \dfrac{{k - 2 \pm \sqrt {{k^2} + 88k} }}{2}$
As k is a positive integer, n will become an integer only if ${k^2} + 88k$ is a perfect square.
So we can write,
${k^2} + 88k = {t^2}$where t is an integer.
${k^2} + 88k - {t^2} = 0$
By using quadratic formula, we get,
$ \Rightarrow k = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
On substituting the values, we get,
$ \Rightarrow k = \dfrac{{ - 88 \pm \sqrt {{{\left( {88} \right)}^2} - 4 \times 1 \times - {t^2}} }}{2}$
We can divide by 4 inside the radicle and by 2 on other terms,
$ \Rightarrow k = - 44 \pm \sqrt {{{\left( {44} \right)}^2} + {t^2}} $
As, k is positive, the root will be positive,
$ \Rightarrow k = - 44 + \sqrt {{{\left( {44} \right)}^2} + {t^2}} $
As k is an integer ${\left( {44} \right)^2} + {t^2}$will be perfect square.
So we can write,
${\left( {44} \right)^2} + {t^2} = {a^2}$
\[ \Rightarrow \]${\left( {44} \right)^2} = {a^2} - {t^2}$
On factorising using the relation ${a^2} - {t^2} = \left( {a + t} \right)\left( {a - t} \right)$, we get,
\[ \Rightarrow \]$44 \times 44 = \left( {a + t} \right)\left( {a - t} \right)$
We can factorise$44 \times 44$,
$44 \times 44 = 2 \times 2 \times 2 \times 2 \times 11 \times 11$
\[ \Rightarrow \]$44 \times 44 = \left( {2 \times 2 \times 2 \times 11 \times 11} \right) \times \left( 2 \right)$
\[ \Rightarrow \]$44 \times 44 = 968 \times 2$
Thus $\left( {a + t} \right)\left( {a - t} \right) = 968 \times 2$
\[ \Rightarrow \]$\left( {a + t} \right) = 968$ and $\left( {a - t} \right) = 2$
By solving, we get,
\[
\,\,\,\,\,\,\,\,\left( {a + t} \right) = 968 \\
\left( - \right)\underline {\left( {a - t} \right) = \,\,\,\,\,\,\,\,2} \\
\,\,\,\,\,\,\,\,\,\,0 + 2t = 966 \\
\]
$ \Rightarrow t = \dfrac{{966}}{2} = 483$
On substituting the value of t in $k = - 44 + \sqrt {{{\left( {44} \right)}^2} + {t^2}} $, we get,
$ \Rightarrow k = - 44 + \sqrt {{{\left( {44} \right)}^2} + {{\left( {483} \right)}^2}} $
On squaring we get,
$ \Rightarrow k = - 44 + \sqrt {1936 + 233289} $
On adding we get,
$ \Rightarrow k = - 44 + \sqrt {235225} $
On taking root we get,
$ \Rightarrow k = - 44 + 485$
On simplification we get,
$ \Rightarrow k = 441$
Now, on substituting the value of k in $n = \dfrac{{k - 2 \pm \sqrt {{k^2} + 88k} }}{2}$, we get,
$ \Rightarrow n = \dfrac{{441 - 2 \pm \sqrt {{{441}^2} + 88 \times 441} }}{2}$
On simplification we get,
$ \Rightarrow n = \dfrac{{439 + \sqrt {19481 + 38808} }}{2}$
On adding we get,
$ \Rightarrow n = \dfrac{{439 \pm \sqrt {233289} }}{2}$
On taking positive square root we get,
$ \Rightarrow n = \dfrac{{439 + 483}}{2}$
On solving further we get,
$ \Rightarrow n = \dfrac{{922}}{2} = 461$
So the required integer is 461.
Therefore the correct answer is option C.
Note: We use the concept of a quadratic equation and the quadratic formula to solve this problem. For the solution of a quadratic equation to be a rational number, its discriminant must be a perfect square. For a quadratic equation of the form $a{x^2} + bx + c = 0$, its discriminant is given by the equation, $D = {b^2} - 4ac$ and its solution is given by$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$. In this question, we only took the positive roots as the largest integer will be positive and terms inside the square root must be positive. After finding the factors of $44 \times 44$, we must only select the factors which give integer values for all the variables. For that, we can try each of the factors starting with the highest factor.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

