
The ${\text{Ksp}}$ of lead iodide ${\text{Pb}}{{\text{I}}_{\text{2}}}$ is $1.4\, \times {10^{ - 8}}$. Calculate the solubility of lead iodide in each of the following:
(a) water
(b) ${\text{0}}{\text{.10}}$M${\text{Pb}}{\left( {{\text{N}}{{\text{O}}_{\text{3}}}} \right)_{\text{2}}}$
(c) ${\text{0}}{\text{.010}}$M${\text{NaI}}$
Answer
558k+ views
Hint: ${{\text{K}}_{{\text{sp}}}}$ represents the solubility product constant at equilibrium. When a solid substance dissolves into water it dissociates into ion. The product of solubilities of the ions with the number of each ion in power is known as the solubility product.
Formula used: ${{\text{K}}_{{\text{sp}}}}\, = \,x{S^x}\, \times \,y{S^y}$
Complete step-by-step solution:
The solubility product constant represents the product of concentrations of constituting ions of an ionic compound at equilibrium each raised number of ions as power.
An ionic compound dissociates into the water as follows:
${{\text{A}}_{\text{x}}}{{\text{B}}_{\text{y}}}\, \rightleftarrows \,\,{\text{x}}{{\text{A}}^{{\text{ + Y}}}}\,{\text{ + }}\,{\text{y}}{{\text{B}}^{ - x}}$
Where, ${\text{AB}}$ is an ionic compound.
The general representation for the solubility product of an ionic compound is as follows:
$\Rightarrow {{\text{K}}_{{\text{sp}}}}\, = \,{\left( {x{A^{ + y}}\,} \right)^x}\, \times \,\,{\left( {y{A^{ - x}}\,} \right)^y}$
$\Rightarrow {{\text{K}}_{{\text{sp}}}}\, = \,x{S^x}\, \times \,y{S^y}$
Where,
${{\text{K}}_{{\text{sp}}}}$ is the solubility product constant.
${\text{S}}$ is the solubility of each ion.
$x$ and $y$ represents the number of ions.
The compound lead iodide ${\text{Pb}}{{\text{I}}_{\text{2}}}$ dissociates into the water as follows:
${\text{Pb}}{{\text{I}}_{\text{2}}}\, \rightleftarrows \,{\text{P}}{{\text{b}}^{{\text{2 + }}}}{\text{ + }}\,2\,{{\text{I}}^ - }$
Chromium hydroxide in water produces one lead ion and two iodide ions.
The solubility product for lead iodide is represented as follows:
$\Rightarrow {{\text{K}}_{{\text{sp}}}}\, = \,{\text{P}}{{\text{b}}^{{\text{2 + }}}}{\text{ + }}\,\,2{{\text{I}}^ - }$
$\Rightarrow {{\text{K}}_{{\text{sp}}}}\, = \,\left( {{\text{S}}\,} \right)\, \times \,\,{\left( {2\,{\text{S}}} \right)^2}$
$\Rightarrow {{\text{K}}_{{\text{sp}}}}\, = \,4{{\text{S}}^3}$
Rearrange the equation for solubility as follows:
$\Rightarrow \,{{\text{S}}^3} = \,\,\dfrac{{{{\text{K}}_{{\text{sp}}}}}}{4}$
$\Rightarrow \,{\text{S}} = \,\,\sqrt[3]{{\dfrac{{{{\text{K}}_{{\text{sp}}}}}}{4}}}$
Substitute $1.4\, \times {10^{ - 8}}$ for ${{\text{K}}_{{\text{sp}}}}$.
$\Rightarrow \,{\text{S}} = \,\,\sqrt[3]{{\dfrac{{1.4\, \times {{10}^{ - 8}}}}{4}}}$
$\Rightarrow \,{\text{S}} = \,\,1.5\, \times {10^{ - 9}}$
So, the solubility of ${\text{Pb}}{{\text{I}}_{\text{2}}}$ in water is$1.5\, \times {10^{ - 9}}$.
The compound lead nitrate ${\text{Pb}}{\left( {{\text{N}}{{\text{O}}_{\text{3}}}} \right)_{\text{2}}}$ dissociates as follows:
$\mathop {{\text{Pb}}{{\left( {{\text{N}}{{\text{O}}_{\text{3}}}} \right)}_{\text{2}}}}\limits_{0.10} \, \rightleftarrows \,\mathop {{\text{P}}{{\text{b}}^{{\text{2 + }}}}}\limits_{0.10} {\text{ + }}\,2\,\mathop {{\text{NO}}_3^ - }\limits_{0.10} $
lead nitrate produces lead ion so, the concentration of lead ion is $0.10$M.
The solubility product for lead iodide is represented as follows:
$\Rightarrow {{\text{K}}_{{\text{sp}}}}\, = \,{\text{P}}{{\text{b}}^{{\text{2 + }}}}{\text{ + }}\,\,2{{\text{I}}^ - }$
$\Rightarrow {{\text{K}}_{{\text{sp}}}}\, = \,\left( {{\text{S + 0}}{\text{.10}}\,} \right)\, \times \,\,{\left( {2\,{\text{S}}} \right)^2}$
${{\text{K}}_{{\text{sp}}}}\, = \,4{{\text{S}}^3}\, + \,0.40\,{{\text{S}}^2}$
As the ${\text{Ksp}}$ of lead iodide ${\text{Pb}}{{\text{I}}_{\text{2}}}$ is very-very ($1.4\, \times {10^{ - 8}}$) means the solubility of the lead iodide is very small so, we can neglect the ${{\text{S}}^3}$. On neglecting $4{{\text{S}}^3}$,
${{\text{K}}_{{\text{sp}}}}\, = \,0.40\,{{\text{S}}^2}$
Rearrange the equation for solubility as follows:
$\Rightarrow \,{{\text{S}}^2} = \,\,\dfrac{{{{\text{K}}_{{\text{sp}}}}}}{{0.40}}$
$\Rightarrow \,{\text{S}} = \,\,\sqrt {\dfrac{{{{\text{K}}_{{\text{sp}}}}}}{{0.40}}} $
Substitute $1.4\, \times {10^{ - 8}}$ for ${{\text{K}}_{{\text{sp}}}}$.
$\Rightarrow \,{\text{S}} = \,\,\sqrt {\dfrac{{1.4\, \times {{10}^{ - 8}}}}{{0.40}}} $
$\Rightarrow \,{\text{S}} = \,\,1.87\, \times {10^{ - 4}}$
So, the solubility of ${\text{Pb}}{{\text{I}}_{\text{2}}}$ in ${\text{Pb}}{\left( {{\text{N}}{{\text{O}}_{\text{3}}}} \right)_{\text{2}}}$ is $1.87\, \times {10^{ - 4}}$.
The compound sodium iodide ${\text{NaI}}$ dissociates as follows:
$\mathop {{\text{NaI}}}\limits_{0.010} \, \rightleftarrows \,\mathop {\,{\text{N}}{{\text{a}}^{\text{ + }}}}\limits_{0.010} {\text{ + }}\,\,\mathop {{{\text{I}}^ - }}\limits_{0.010} $
Sodium iodide produces iodide ion so the concentration of iodide ion is $0.010$M.
The solubility product for sodium iodide is represented as follows:
$\Rightarrow {{\text{K}}_{{\text{sp}}}}\, = \,{\text{P}}{{\text{b}}^{{\text{2 + }}}}{\text{ + }}\,\,2{{\text{I}}^ - }$
\[\Rightarrow {{\text{K}}_{{\text{sp}}}}\, = \,\left( {\text{S}} \right)\, \times \,\,{\left( {2\,{\text{S + }}\,{\text{0}}{\text{.010}}} \right)^2}\]
\[\Rightarrow {{\text{K}}_{{\text{sp}}}}\, = \,4{{\text{S}}^3}\, + \,0.040\,{{\text{S}}^2}\,{\text{ + }}\,\,1 \times {10^{ - 4}}{\text{S}}\]
On neglecting $4{{\text{S}}^3}$ and \[0.040\,{{\text{S}}^2}\],
$\Rightarrow {{\text{K}}_{{\text{sp}}}}\, = \,1 \times {10^{ - 4}}{\text{S}}$
Rearrange the equation for solubility as follows:
$\Rightarrow \,{\text{S}} = \,\,\dfrac{{{{\text{K}}_{{\text{sp}}}}}}{{1 \times {{10}^{ - 4}}}}$
Substitute $1.4\, \times {10^{ - 8}}$ for ${{\text{K}}_{{\text{sp}}}}$.
$\Rightarrow \,{\text{S}} = \,\,\dfrac{{1.4\, \times {{10}^{ - 8}}}}{{1 \times {{10}^{ - 4}}}}$
$\,{\text{S}} = \,\,1.4\, \times {10^{ - 4}}$
So, the solubility of ${\text{Pb}}{{\text{I}}_{\text{2}}}$ in ${\text{NaI}}$ is $1.4\, \times {10^{ - 4}}$.
Note: The formula of solubility product constant depends upon the number of ions produced by the ionic compounds in the water. When a soluble salt is dissolved in a solution and the soluble salt produces the ions that are produced by the insoluble salt that is already present in the solution, is known as the common ion effect. The common ion effect increases the solubility of the insoluble salt in the solution. Lead nitrates and sodium iodide both are soluble in water and they produce lead and iodide common ions respectively. So, the solubility of lead iodide is more in lead nitrates and sodium iodide than in water.
Formula used: ${{\text{K}}_{{\text{sp}}}}\, = \,x{S^x}\, \times \,y{S^y}$
Complete step-by-step solution:
The solubility product constant represents the product of concentrations of constituting ions of an ionic compound at equilibrium each raised number of ions as power.
An ionic compound dissociates into the water as follows:
${{\text{A}}_{\text{x}}}{{\text{B}}_{\text{y}}}\, \rightleftarrows \,\,{\text{x}}{{\text{A}}^{{\text{ + Y}}}}\,{\text{ + }}\,{\text{y}}{{\text{B}}^{ - x}}$
Where, ${\text{AB}}$ is an ionic compound.
The general representation for the solubility product of an ionic compound is as follows:
$\Rightarrow {{\text{K}}_{{\text{sp}}}}\, = \,{\left( {x{A^{ + y}}\,} \right)^x}\, \times \,\,{\left( {y{A^{ - x}}\,} \right)^y}$
$\Rightarrow {{\text{K}}_{{\text{sp}}}}\, = \,x{S^x}\, \times \,y{S^y}$
Where,
${{\text{K}}_{{\text{sp}}}}$ is the solubility product constant.
${\text{S}}$ is the solubility of each ion.
$x$ and $y$ represents the number of ions.
The compound lead iodide ${\text{Pb}}{{\text{I}}_{\text{2}}}$ dissociates into the water as follows:
${\text{Pb}}{{\text{I}}_{\text{2}}}\, \rightleftarrows \,{\text{P}}{{\text{b}}^{{\text{2 + }}}}{\text{ + }}\,2\,{{\text{I}}^ - }$
Chromium hydroxide in water produces one lead ion and two iodide ions.
The solubility product for lead iodide is represented as follows:
$\Rightarrow {{\text{K}}_{{\text{sp}}}}\, = \,{\text{P}}{{\text{b}}^{{\text{2 + }}}}{\text{ + }}\,\,2{{\text{I}}^ - }$
$\Rightarrow {{\text{K}}_{{\text{sp}}}}\, = \,\left( {{\text{S}}\,} \right)\, \times \,\,{\left( {2\,{\text{S}}} \right)^2}$
$\Rightarrow {{\text{K}}_{{\text{sp}}}}\, = \,4{{\text{S}}^3}$
Rearrange the equation for solubility as follows:
$\Rightarrow \,{{\text{S}}^3} = \,\,\dfrac{{{{\text{K}}_{{\text{sp}}}}}}{4}$
$\Rightarrow \,{\text{S}} = \,\,\sqrt[3]{{\dfrac{{{{\text{K}}_{{\text{sp}}}}}}{4}}}$
Substitute $1.4\, \times {10^{ - 8}}$ for ${{\text{K}}_{{\text{sp}}}}$.
$\Rightarrow \,{\text{S}} = \,\,\sqrt[3]{{\dfrac{{1.4\, \times {{10}^{ - 8}}}}{4}}}$
$\Rightarrow \,{\text{S}} = \,\,1.5\, \times {10^{ - 9}}$
So, the solubility of ${\text{Pb}}{{\text{I}}_{\text{2}}}$ in water is$1.5\, \times {10^{ - 9}}$.
The compound lead nitrate ${\text{Pb}}{\left( {{\text{N}}{{\text{O}}_{\text{3}}}} \right)_{\text{2}}}$ dissociates as follows:
$\mathop {{\text{Pb}}{{\left( {{\text{N}}{{\text{O}}_{\text{3}}}} \right)}_{\text{2}}}}\limits_{0.10} \, \rightleftarrows \,\mathop {{\text{P}}{{\text{b}}^{{\text{2 + }}}}}\limits_{0.10} {\text{ + }}\,2\,\mathop {{\text{NO}}_3^ - }\limits_{0.10} $
lead nitrate produces lead ion so, the concentration of lead ion is $0.10$M.
The solubility product for lead iodide is represented as follows:
$\Rightarrow {{\text{K}}_{{\text{sp}}}}\, = \,{\text{P}}{{\text{b}}^{{\text{2 + }}}}{\text{ + }}\,\,2{{\text{I}}^ - }$
$\Rightarrow {{\text{K}}_{{\text{sp}}}}\, = \,\left( {{\text{S + 0}}{\text{.10}}\,} \right)\, \times \,\,{\left( {2\,{\text{S}}} \right)^2}$
${{\text{K}}_{{\text{sp}}}}\, = \,4{{\text{S}}^3}\, + \,0.40\,{{\text{S}}^2}$
As the ${\text{Ksp}}$ of lead iodide ${\text{Pb}}{{\text{I}}_{\text{2}}}$ is very-very ($1.4\, \times {10^{ - 8}}$) means the solubility of the lead iodide is very small so, we can neglect the ${{\text{S}}^3}$. On neglecting $4{{\text{S}}^3}$,
${{\text{K}}_{{\text{sp}}}}\, = \,0.40\,{{\text{S}}^2}$
Rearrange the equation for solubility as follows:
$\Rightarrow \,{{\text{S}}^2} = \,\,\dfrac{{{{\text{K}}_{{\text{sp}}}}}}{{0.40}}$
$\Rightarrow \,{\text{S}} = \,\,\sqrt {\dfrac{{{{\text{K}}_{{\text{sp}}}}}}{{0.40}}} $
Substitute $1.4\, \times {10^{ - 8}}$ for ${{\text{K}}_{{\text{sp}}}}$.
$\Rightarrow \,{\text{S}} = \,\,\sqrt {\dfrac{{1.4\, \times {{10}^{ - 8}}}}{{0.40}}} $
$\Rightarrow \,{\text{S}} = \,\,1.87\, \times {10^{ - 4}}$
So, the solubility of ${\text{Pb}}{{\text{I}}_{\text{2}}}$ in ${\text{Pb}}{\left( {{\text{N}}{{\text{O}}_{\text{3}}}} \right)_{\text{2}}}$ is $1.87\, \times {10^{ - 4}}$.
The compound sodium iodide ${\text{NaI}}$ dissociates as follows:
$\mathop {{\text{NaI}}}\limits_{0.010} \, \rightleftarrows \,\mathop {\,{\text{N}}{{\text{a}}^{\text{ + }}}}\limits_{0.010} {\text{ + }}\,\,\mathop {{{\text{I}}^ - }}\limits_{0.010} $
Sodium iodide produces iodide ion so the concentration of iodide ion is $0.010$M.
The solubility product for sodium iodide is represented as follows:
$\Rightarrow {{\text{K}}_{{\text{sp}}}}\, = \,{\text{P}}{{\text{b}}^{{\text{2 + }}}}{\text{ + }}\,\,2{{\text{I}}^ - }$
\[\Rightarrow {{\text{K}}_{{\text{sp}}}}\, = \,\left( {\text{S}} \right)\, \times \,\,{\left( {2\,{\text{S + }}\,{\text{0}}{\text{.010}}} \right)^2}\]
\[\Rightarrow {{\text{K}}_{{\text{sp}}}}\, = \,4{{\text{S}}^3}\, + \,0.040\,{{\text{S}}^2}\,{\text{ + }}\,\,1 \times {10^{ - 4}}{\text{S}}\]
On neglecting $4{{\text{S}}^3}$ and \[0.040\,{{\text{S}}^2}\],
$\Rightarrow {{\text{K}}_{{\text{sp}}}}\, = \,1 \times {10^{ - 4}}{\text{S}}$
Rearrange the equation for solubility as follows:
$\Rightarrow \,{\text{S}} = \,\,\dfrac{{{{\text{K}}_{{\text{sp}}}}}}{{1 \times {{10}^{ - 4}}}}$
Substitute $1.4\, \times {10^{ - 8}}$ for ${{\text{K}}_{{\text{sp}}}}$.
$\Rightarrow \,{\text{S}} = \,\,\dfrac{{1.4\, \times {{10}^{ - 8}}}}{{1 \times {{10}^{ - 4}}}}$
$\,{\text{S}} = \,\,1.4\, \times {10^{ - 4}}$
So, the solubility of ${\text{Pb}}{{\text{I}}_{\text{2}}}$ in ${\text{NaI}}$ is $1.4\, \times {10^{ - 4}}$.
Note: The formula of solubility product constant depends upon the number of ions produced by the ionic compounds in the water. When a soluble salt is dissolved in a solution and the soluble salt produces the ions that are produced by the insoluble salt that is already present in the solution, is known as the common ion effect. The common ion effect increases the solubility of the insoluble salt in the solution. Lead nitrates and sodium iodide both are soluble in water and they produce lead and iodide common ions respectively. So, the solubility of lead iodide is more in lead nitrates and sodium iodide than in water.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

