
The ionization energy of a hydrogen atom is 13.6 $eV$. What will be the ionization energy of $H{{e}^{+}}$ and $L{{i}^{+2}}$ ions?
Answer
574.5k+ views
Hint: As $H{{e}^{+}}$ and $L{{i}^{+2}}$ both ions contain one electron similar to a hydrogen atom. The ionization energy of such ions also known as hydrogen like species can be calculated using following formula: ionization energy = $\dfrac{13.6{{Z}^{2}}}{{{n}^{2}}}eV$ where Z is atomic number and n is shell number. Value of Z for helium is 2 and for lithium is 3.
Complete solution step by step:
-Bohr’s atomic model is based on following postulates:
-The electron in a hydrogen atom can move in a circular path around the nucleus. These paths are called orbits.
-These orbits are arranged around the nucleus concentrically.
-the energy of the electron in orbit does not change with time.
-when electron moves from lower stationary state to higher stationary state when required amount of energy is absorbed.
-when electron moves from higher stationary state to lower stationary state, energy is emitted.
-the energy change does not take place in a continuous manner.
-The frequency of radiation absorbed or emitted when transition occurs between two stationary states that differ in energy \[\Delta E\]is given by:
\[\nu =\dfrac{\Delta \varepsilon }{h}=\dfrac{{{E}_{2}}-{{E}_{1}}}{h}\]
Where ${{E}_{1}}$and ${{E}_{2}}$ are energies of lower and higher energy states.
-The stationary states for electrons are numbered n=1,2,3…
-The radii of stationary states are expressed as:
\[{{r}_{n}}={{n}^{2}}{{a}_{0}}\]where ${{a}_{0}}$=52.9pm. radius of first stationary state called bohr orbit.
-Energy associated with electron in its stationary state is given by
\[{{E}_{n}}=-{{R}_{H}}\dfrac{1}{{{n}^{2}}}\]
Where \[{{R}_{H}}\]is Rydberg constant and value for this constant is \[-2.18\times {{10}^{-18}}J\]
The energy of lowest state also called ground state is
${{E}_{1}}$=\[-2.18\times {{10}^{-18}}\dfrac{1}{{{(1)}^{2}}}\] =$-2.18\times {{10}^{-18}}J$
Ionization energy is defined as the amount of energy required to remove an electron resulting in formation of cation.
$2.18\times {{10}^{-18}}J=13.6eV$
-Bohr’s theory can also be applied to ions containing only one electron. So, for \[H{{e}^{+}}\] and $L{{i}^{+2}}$, ionization energy can be calculated as
Ionization energy= \[\dfrac{13.6{{Z}^{2}}}{{{n}^{2}}}eV\] Where Z is atomic number and n is number of shells
Ionization energy for \[H{{e}^{+}}\]= \[\dfrac{13.6\times {{2}^{2}}}{1}=54.4eV\]
Ionization energy for $L{{i}^{+2}}$= \[\dfrac{13.6\times {{3}^{2}}}{1}=122.4eV\]
Note: Ionization energy is defined as the amount of energy that must be absorbed to remove an electron resulting in formation of cation. For hydrogen atom energy of \[13.6eV\]must be absorbed to remove an electron. The ionization energy of ions containing one electron can be calculated using following formula:
ionization energy = $\dfrac{13.6{{Z}^{2}}}{{{n}^{2}}}eV$ where Z is atomic number and n is shell number, n is considered as 1.
Also, $2.18\times {{10}^{-18}}J=13.6eV$
Complete solution step by step:
-Bohr’s atomic model is based on following postulates:
-The electron in a hydrogen atom can move in a circular path around the nucleus. These paths are called orbits.
-These orbits are arranged around the nucleus concentrically.
-the energy of the electron in orbit does not change with time.
-when electron moves from lower stationary state to higher stationary state when required amount of energy is absorbed.
-when electron moves from higher stationary state to lower stationary state, energy is emitted.
-the energy change does not take place in a continuous manner.
-The frequency of radiation absorbed or emitted when transition occurs between two stationary states that differ in energy \[\Delta E\]is given by:
\[\nu =\dfrac{\Delta \varepsilon }{h}=\dfrac{{{E}_{2}}-{{E}_{1}}}{h}\]
Where ${{E}_{1}}$and ${{E}_{2}}$ are energies of lower and higher energy states.
-The stationary states for electrons are numbered n=1,2,3…
-The radii of stationary states are expressed as:
\[{{r}_{n}}={{n}^{2}}{{a}_{0}}\]where ${{a}_{0}}$=52.9pm. radius of first stationary state called bohr orbit.
-Energy associated with electron in its stationary state is given by
\[{{E}_{n}}=-{{R}_{H}}\dfrac{1}{{{n}^{2}}}\]
Where \[{{R}_{H}}\]is Rydberg constant and value for this constant is \[-2.18\times {{10}^{-18}}J\]
The energy of lowest state also called ground state is
${{E}_{1}}$=\[-2.18\times {{10}^{-18}}\dfrac{1}{{{(1)}^{2}}}\] =$-2.18\times {{10}^{-18}}J$
Ionization energy is defined as the amount of energy required to remove an electron resulting in formation of cation.
$2.18\times {{10}^{-18}}J=13.6eV$
-Bohr’s theory can also be applied to ions containing only one electron. So, for \[H{{e}^{+}}\] and $L{{i}^{+2}}$, ionization energy can be calculated as
Ionization energy= \[\dfrac{13.6{{Z}^{2}}}{{{n}^{2}}}eV\] Where Z is atomic number and n is number of shells
Ionization energy for \[H{{e}^{+}}\]= \[\dfrac{13.6\times {{2}^{2}}}{1}=54.4eV\]
Ionization energy for $L{{i}^{+2}}$= \[\dfrac{13.6\times {{3}^{2}}}{1}=122.4eV\]
Note: Ionization energy is defined as the amount of energy that must be absorbed to remove an electron resulting in formation of cation. For hydrogen atom energy of \[13.6eV\]must be absorbed to remove an electron. The ionization energy of ions containing one electron can be calculated using following formula:
ionization energy = $\dfrac{13.6{{Z}^{2}}}{{{n}^{2}}}eV$ where Z is atomic number and n is shell number, n is considered as 1.
Also, $2.18\times {{10}^{-18}}J=13.6eV$
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

