Answer
Verified
429.6k+ views
Hint
We know that semiconductors are materials which have a conductivity between conductors which are generally metals and non-conductors or insulators such as most ceramics. Semiconductors can be pure elements, such as silicon or germanium, or compounds such as gallium arsenide or cadmium selenide. Semiconductors are employed in the manufacture of various kinds of electronic devices, including diodes, transistors, and integrated circuits. Such devices have found wide application because of their compactness, reliability, power efficiency, and low cost. On the basis of this we have to solve this question.
Complete step by step answer
Let us first explain the kinds of semiconductors.
So, an intrinsic semiconductor is an undoped semiconductor. This means that holes in the valence band are vacancies created by electrons that have been thermally excited to the conduction band, as opposed to doped semiconductors where holes or electrons are supplied by a foreign atom acting as an impurity. On the other hand, an extrinsic semiconductor is a semiconductor doped by a specific impurity which is able to deeply modify its electrical properties, making it suitable for electronic applications on diodes, transistors, and many other or optoelectronic applications like on light emitters and detectors.
So, we can write that
From the law of mass action, law states that the rate of any chemical reaction is proportional to the product of the masses of the reacting substances, with each mass raised to a power equal to the coefficient that occurs in the equation.
$ nP=n{{i}^{2}} $
So, after we put the values, we get:
$ \mathrm{n}=\dfrac{2.5 \times 2.5 \times 10^{26}}{5 \times 10^{16}} $
$ \mathrm{n}=1.25 \times 10^{10} / \mathrm{cm}^{3} $.
Hence, the option (C) is the correct answer.
Note
We know that the positive charge carriers such as holes are the charge carriers that carry positive charge with them while moving from one place to another place. Holes are the vacancies in the valence band that move from one place to another place within the valence band. Free carriers are electrons or holes which have been introduced directly into the conduction band or valence band by doping and are not promoted thermally. For this reason, electrons holes will not act as double carriers by leaving behind holes electrons in the other band.
Thus, we can say that a charge carrier is a particle or quasiparticle that is free to move, carrying an electric charge, especially the particles that carry electric charges in electrical conductors.
We know that semiconductors are materials which have a conductivity between conductors which are generally metals and non-conductors or insulators such as most ceramics. Semiconductors can be pure elements, such as silicon or germanium, or compounds such as gallium arsenide or cadmium selenide. Semiconductors are employed in the manufacture of various kinds of electronic devices, including diodes, transistors, and integrated circuits. Such devices have found wide application because of their compactness, reliability, power efficiency, and low cost. On the basis of this we have to solve this question.
Complete step by step answer
Let us first explain the kinds of semiconductors.
So, an intrinsic semiconductor is an undoped semiconductor. This means that holes in the valence band are vacancies created by electrons that have been thermally excited to the conduction band, as opposed to doped semiconductors where holes or electrons are supplied by a foreign atom acting as an impurity. On the other hand, an extrinsic semiconductor is a semiconductor doped by a specific impurity which is able to deeply modify its electrical properties, making it suitable for electronic applications on diodes, transistors, and many other or optoelectronic applications like on light emitters and detectors.
So, we can write that
From the law of mass action, law states that the rate of any chemical reaction is proportional to the product of the masses of the reacting substances, with each mass raised to a power equal to the coefficient that occurs in the equation.
$ nP=n{{i}^{2}} $
So, after we put the values, we get:
$ \mathrm{n}=\dfrac{2.5 \times 2.5 \times 10^{26}}{5 \times 10^{16}} $
$ \mathrm{n}=1.25 \times 10^{10} / \mathrm{cm}^{3} $.
Hence, the option (C) is the correct answer.
Note
We know that the positive charge carriers such as holes are the charge carriers that carry positive charge with them while moving from one place to another place. Holes are the vacancies in the valence band that move from one place to another place within the valence band. Free carriers are electrons or holes which have been introduced directly into the conduction band or valence band by doping and are not promoted thermally. For this reason, electrons holes will not act as double carriers by leaving behind holes electrons in the other band.
Thus, we can say that a charge carrier is a particle or quasiparticle that is free to move, carrying an electric charge, especially the particles that carry electric charges in electrical conductors.
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Which are the Top 10 Largest Countries of the World?
10 examples of evaporation in daily life with explanations
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Difference Between Plant Cell and Animal Cell