
The $\int{\left[ \dfrac{\left( 1+x \right){{e}^{x}}}{{{\sin }^{2}}\left( x{{e}^{x}} \right)} \right]dx}$ is
A. $-\cot \left( {{e}^{x}} \right)+c$
B. $\tan \left( x{{e}^{x}} \right)+c$
C. $\tan \left( {{e}^{x}} \right)+c$
D. $\cot \left( x{{e}^{x}} \right)+c$
E. $-\cot \left( x{{e}^{x}} \right)+c$
Answer
499.5k+ views
Hint: We first explain the terms $\dfrac{dy}{dx}$ where $y=f\left( x \right)$. We then need to integrate the equation once to find all the solutions of the integration. We take one arbitrary constant term for the integration. We use replacement of base value where $z=x{{e}^{x}}$ for $\int{\left[ \dfrac{\left( 1+x \right){{e}^{x}}}{{{\sin }^{2}}\left( x{{e}^{x}} \right)} \right]dx}$. We also use the integral theorem where $\int{{{\csc }^{2}}xdx}=-\cot x+c$.
Complete step by step answer:
We need to find the integral of $\int{\left[ \dfrac{\left( 1+x \right){{e}^{x}}}{{{\sin }^{2}}\left( x{{e}^{x}} \right)} \right]dx}$. We are going to change the base of the integral where we assume the new variable of $z=x{{e}^{x}}$. We take the new base and differentiate the equation $z=x{{e}^{x}}$. Differentiating both sides with respect to $x$, we get
\[\dfrac{d}{dx}\left( z \right)=\dfrac{d}{dx}\left( x{{e}^{x}} \right) \\
\Rightarrow \dfrac{dz}{dx}=x{{e}^{x}}+{{e}^{x}}=\left( 1+x \right){{e}^{x}} \]
Now we convert the differentiation into a differential form where \[dz=\left( 1+x \right){{e}^{x}}dx\].
We now replace all those values with \[dz=\left( 1+x \right){{e}^{x}}dx\] and $z=x{{e}^{x}}$ in the integration.
$\int{\left[ \dfrac{\left( 1+x \right){{e}^{x}}}{{{\sin }^{2}}\left( x{{e}^{x}} \right)} \right]dx}=\int{\dfrac{dz}{{{\sin }^{2}}z}} \\
\Rightarrow \int{\left[ \dfrac{\left( 1+x \right){{e}^{x}}}{{{\sin }^{2}}\left( x{{e}^{x}} \right)} \right]dx} =\int{{{\csc }^{2}}zdz} \\ $
Now we use the integral theorem of $\int{{{\csc }^{2}}xdx}=-\cot x+c$.
We get $\int{{{\csc }^{2}}zdz}=-\cot z+c$. We put the values where $z=x{{e}^{x}}$.
$\int{\left[ \dfrac{\left( 1+x \right){{e}^{x}}}{{{\sin }^{2}}\left( x{{e}^{x}} \right)} \right]dx}=-\cot z+c=-\cot \left( x{{e}^{x}} \right)+c$. Here $c$ is the integral constant.
The integral of $\int{\left[ \dfrac{\left( 1+x \right){{e}^{x}}}{{{\sin }^{2}}\left( x{{e}^{x}} \right)} \right]dx}$ is $-\cot \left( x{{e}^{x}} \right)+c$.
Hence, the correct option is E.
Note: We can also solve those integrations using the differential form directly. In that case the integral $\int{\left[ \dfrac{\left( 1+x \right){{e}^{x}}}{{{\sin }^{2}}\left( x{{e}^{x}} \right)} \right]dx}$ becomes $\int{{{\csc }^{2}}\left( x{{e}^{x}} \right)d\left( x{{e}^{x}} \right)}$. As the respective integral point is the same, we can use the formula $\int{{{\csc }^{2}}xdx}=-\cot x+c$.
Complete step by step answer:
We need to find the integral of $\int{\left[ \dfrac{\left( 1+x \right){{e}^{x}}}{{{\sin }^{2}}\left( x{{e}^{x}} \right)} \right]dx}$. We are going to change the base of the integral where we assume the new variable of $z=x{{e}^{x}}$. We take the new base and differentiate the equation $z=x{{e}^{x}}$. Differentiating both sides with respect to $x$, we get
\[\dfrac{d}{dx}\left( z \right)=\dfrac{d}{dx}\left( x{{e}^{x}} \right) \\
\Rightarrow \dfrac{dz}{dx}=x{{e}^{x}}+{{e}^{x}}=\left( 1+x \right){{e}^{x}} \]
Now we convert the differentiation into a differential form where \[dz=\left( 1+x \right){{e}^{x}}dx\].
We now replace all those values with \[dz=\left( 1+x \right){{e}^{x}}dx\] and $z=x{{e}^{x}}$ in the integration.
$\int{\left[ \dfrac{\left( 1+x \right){{e}^{x}}}{{{\sin }^{2}}\left( x{{e}^{x}} \right)} \right]dx}=\int{\dfrac{dz}{{{\sin }^{2}}z}} \\
\Rightarrow \int{\left[ \dfrac{\left( 1+x \right){{e}^{x}}}{{{\sin }^{2}}\left( x{{e}^{x}} \right)} \right]dx} =\int{{{\csc }^{2}}zdz} \\ $
Now we use the integral theorem of $\int{{{\csc }^{2}}xdx}=-\cot x+c$.
We get $\int{{{\csc }^{2}}zdz}=-\cot z+c$. We put the values where $z=x{{e}^{x}}$.
$\int{\left[ \dfrac{\left( 1+x \right){{e}^{x}}}{{{\sin }^{2}}\left( x{{e}^{x}} \right)} \right]dx}=-\cot z+c=-\cot \left( x{{e}^{x}} \right)+c$. Here $c$ is the integral constant.
The integral of $\int{\left[ \dfrac{\left( 1+x \right){{e}^{x}}}{{{\sin }^{2}}\left( x{{e}^{x}} \right)} \right]dx}$ is $-\cot \left( x{{e}^{x}} \right)+c$.
Hence, the correct option is E.
Note: We can also solve those integrations using the differential form directly. In that case the integral $\int{\left[ \dfrac{\left( 1+x \right){{e}^{x}}}{{{\sin }^{2}}\left( x{{e}^{x}} \right)} \right]dx}$ becomes $\int{{{\csc }^{2}}\left( x{{e}^{x}} \right)d\left( x{{e}^{x}} \right)}$. As the respective integral point is the same, we can use the formula $\int{{{\csc }^{2}}xdx}=-\cot x+c$.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

