   Question Answers

# The integral part of ${\left( {\sqrt 2 + 1} \right)^6}$ isA. 197B. 196C. 175D. 176  Hint: First of all, consider the given binomial as the sum of integral part and fractional part. Then add up this binomial with its contemporary binomial to find the integral part of the given binomial, use the binomial theorem for the expansion of the binomials. So, use this concept to reach the solution of the given problem.

Let the ${\left( {\sqrt 2 + 1} \right)^6} = I + F$
Where, $I$ is an integer and $F$ is a fractional part i.e., $0 < F < 1$
Let ${\left( {\sqrt 2 - 1} \right)^6} = f$
Where, $f$ is a fractional part i.e., $0 < f < 1$ and hence, $0 < {\left( {\sqrt 2 - 1} \right)^6} < 1$.
We know that ${\left( {x + y} \right)^n} = {}^n{C_0}{x^n} + {}^n{C_1}{x^{n - 1}}y + {}^n{C_2}{x^{n - 2}}{y^2} + ........... + {}^n{C_r}{x^{n - r}}{y^r}................ + {}^n{C_n}{y^n}$ and ${\left( {x - y} \right)^n} = {}^n{C_0}{x^n} + {\left( { - 1} \right)^1}{}^n{C_1}{x^{n - 1}}y + {\left( { - 1} \right)^2}{}^n{C_2}{x^{n - 2}}{y^2} + ........... + {\left( { - 1} \right)^r}{}^n{C_r}{x^{n - r}}{y^r}................. + {\left( { - 1} \right)^n}{}^n{C_n}{y^n}$
Consider,
$\Rightarrow {\left( {\sqrt 2 + 1} \right)^6} + {\left( {\sqrt 2 - 1} \right)^6} = \left[ {{}^6{C_0}{{\left( {\sqrt 2 } \right)}^6} + {}^6{C_1}{{\left( {\sqrt 2 } \right)}^5}{{\left( 1 \right)}^1} + {}^6{C_2}{{\left( {\sqrt 2 } \right)}^4}{{\left( 1 \right)}^2} + {}^6{C_3}{{\left( {\sqrt 2 } \right)}^3}{{\left( 1 \right)}^3} + {}^6{C_4}{{\left( {\sqrt 2 } \right)}^2}{{\left( 1 \right)}^4} + {}^6{C_5}{{\left( {\sqrt 2 } \right)}^1}{{\left( 1 \right)}^5} + {}^6{C_6}{{\left( 1 \right)}^6}} \right] - \\ {\text{ }}\left[ {{}^6{C_0}{{\left( {\sqrt 2 } \right)}^6} - {}^6{C_1}{{\left( {\sqrt 2 } \right)}^5}{{\left( 1 \right)}^1} - {}^6{C_2}{{\left( {\sqrt 2 } \right)}^4}{{\left( 1 \right)}^2} - {}^6{C_3}{{\left( {\sqrt 2 } \right)}^3}{{\left( 1 \right)}^3} - {}^6{C_4}{{\left( {\sqrt 2 } \right)}^2}{{\left( 1 \right)}^4} - {}^6{C_5}{{\left( {\sqrt 2 } \right)}^1}{{\left( 1 \right)}^5} - {}^6{C_6}{{\left( 1 \right)}^6}} \right] \\$
Cancelling the common terms, we get
$\Rightarrow {\left( {\sqrt 2 + 1} \right)^6} + {\left( {\sqrt 2 - 1} \right)^6} = 2\left[ {{}^6{C_0}{{\left( {\sqrt 2 } \right)}^6} + {}^6{C_2}{{\left( {\sqrt 2 } \right)}^4}{{\left( 1 \right)}^2} + {}^6{C_4}{{\left( {\sqrt 2 } \right)}^2}{{\left( 1 \right)}^4} + {}^6{C_6}{{\left( 1 \right)}^6}} \right] \\ \Rightarrow {\left( {\sqrt 2 + 1} \right)^6} + {\left( {\sqrt 2 - 1} \right)^6} = 2\left[ {{}^6{C_0} \times 8 + {}^6{C_2} \times 4 + {}^6{C_4} \times 2 + {}^6{C_6} \times 1} \right] \\ \Rightarrow {\left( {\sqrt 2 + 1} \right)^6} + {\left( {\sqrt 2 - 1} \right)^6} = 2\left[ {1 \times 8 + 15 \times 4 + {}^6{C_4} \times 2 + 1 \times 1} \right] \\ \Rightarrow {\left( {\sqrt 2 + 1} \right)^6} + {\left( {\sqrt 2 - 1} \right)^6} = 2\left[ {99} \right] \\ \Rightarrow {\left( {\sqrt 2 + 1} \right)^6} + {\left( {\sqrt 2 - 1} \right)^6} = 198{\text{ }} \\ {\text{ }} \\$
But we have ${\left( {\sqrt 2 + 1} \right)^6} + {\left( {\sqrt 2 - 1} \right)^6} = I + F + f$. So, we get
$\Rightarrow I + F + f = 198 \\ {\text{ }} \\$
Here $I$is an integer and 198 is an integer. And $I + F + f = 198$ is only possible when $F + f$ is an integer.
But we have $0 < F < 1$ and $0 < f < 1$. Adding up them, we get
$\Rightarrow 0 + 0 < F + f < 1 + 1 \\ \Rightarrow 0 < F + f < 2 \\$
We know that the only 1 is the integer which is greater than 0 and lesser than 2. So, the value of $F + f = 1$.
Therefore, we get
$\Rightarrow I + 1 = 198 \\ \therefore I = 198 - 1 = 197 \\$
Hence, the integral part of ${\left( {\sqrt 2 + 1} \right)^6}$ is 197.
Thus, the correct option is A. 197

Note: Here we have added ${\left( {\sqrt 2 - 1} \right)^6}$to the given binomial since its value is less than one and greater than zero i.e., $0 < {\left( {\sqrt 2 - 1} \right)^6} < 1$. Remember this method for finding the integral parts of the binomials.

NCERT Class 10 Sanskrit Abhyaswaan Bhav Part 2 Book PDF  NCERT Book Class 12 History Themes in India Part 2 PDF  The Difference Between an Animal that is A Regulator and One that is A Conformer  NCERT Book Class 11 Accountancy - Accountancy Part 2 PDF  NCERT Book Class 12 History Themes in India Part 1 PDF  Where There is a Will There is a Way Essay  NCERT Book Class 11 Accountancy Financial Accountancy Part 1 PDF  The Making of a Scientist  Changing the Period of a Pendulum  NCERT Book Class 11 Computer and Communication Technology CCT Part 2 PDF  Important Questions for CBSE Class 6 English A Pact with The Sun Chapter 1 - A Tale of Two Birds  Important Questions for CBSE Class 10 Maths Chapter 2 - Polynomials  Important Questions for CBSE Class 6 English A Pact with The Sun Chapter 2 - The Friendly Mongoose  Important Questions for CBSE Class 6 English A Pact with The Sun Chapter 10 - A Strange Wrestling Match  Important Questions for CBSE Class 10 Maths Chapter 1 - Real Numbers  Important Questions for CBSE Class 7 English Honeycomb Chapter 2 - A Gift Of Chappals  Important Questions for CBSE Class 7 English Honeycomb Chapter 10 - The Story of Cricket    Important Questions for CBSE Class 8 Science Chapter 10 - Reaching The Age of Adolescence  Important Questions for CBSE Class 11 English Snapshots Chapter 1 - The Summer of the Beautiful White Horse  CBSE Class 10 Hindi A Question Paper 2020  Hindi A Class 10 CBSE Question Paper 2009  Hindi A Class 10 CBSE Question Paper 2015  Hindi A Class 10 CBSE Question Paper 2016  Hindi A Class 10 CBSE Question Paper 2012  Hindi A Class 10 CBSE Question Paper 2010  Hindi A Class 10 CBSE Question Paper 2008  Hindi A Class 10 CBSE Question Paper 2014  Hindi A Class 10 CBSE Question Paper 2007  Hindi A Class 10 CBSE Question Paper 2013  RD Sharma Class 10 Solutions Chapter 2 - Polynomials (Ex 2.1) Exercise 2.1  Concepts of Physics Part 2 - HC Verma Solutions  RD Sharma Class 10 Solutions Chapter 1 - Real Numbers (Ex 1.2) Exercise 1.2  RS Aggarwal Solutions Class 10 Chapter 1 - Real Numbers (Ex 1B) Exercise 1.2  RS Aggarwal Solutions Class 10 Chapter 2 - Polynomials (Ex 2A) Exercise 2.1  Concepts of Physics Part 1 - HC Verma Solutions  NCERT Solutions for Class 10 Maths Chapter 2 Polynomials (Ex 2.1) Exercise 2.1  NCERT Solutions for Class 10 Maths Chapter 1  RS Aggarwal Solutions Class 6 Chapter-2 Factors and Multiples (Ex 2A) Exercise 2.1  RS Aggarwal Solutions Class 8 Chapter-2 Exponents (Ex 2A) Exercise 2.1  