Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

The integral part of \[{\left( {\sqrt 2 + 1} \right)^6}\] is
A. 197
B. 196
C. 175
D. 176

seo-qna
Last updated date: 20th Apr 2024
Total views: 399.3k
Views today: 11.99k
Answer
VerifiedVerified
399.3k+ views
Hint: First of all, consider the given binomial as the sum of integral part and fractional part. Then add up this binomial with its contemporary binomial to find the integral part of the given binomial, use the binomial theorem for the expansion of the binomials. So, use this concept to reach the solution of the given problem.

Complete step-by-step answer:
Let the \[{\left( {\sqrt 2 + 1} \right)^6} = I + F\]
Where, \[I\] is an integer and \[F\] is a fractional part i.e., \[0 < F < 1\]
Let \[{\left( {\sqrt 2 - 1} \right)^6} = f\]
Where, \[f\] is a fractional part i.e., \[0 < f < 1\] and hence, \[0 < {\left( {\sqrt 2 - 1} \right)^6} < 1\].
We know that \[{\left( {x + y} \right)^n} = {}^n{C_0}{x^n} + {}^n{C_1}{x^{n - 1}}y + {}^n{C_2}{x^{n - 2}}{y^2} + ........... + {}^n{C_r}{x^{n - r}}{y^r}................ + {}^n{C_n}{y^n}\] and \[{\left( {x - y} \right)^n} = {}^n{C_0}{x^n} + {\left( { - 1} \right)^1}{}^n{C_1}{x^{n - 1}}y + {\left( { - 1} \right)^2}{}^n{C_2}{x^{n - 2}}{y^2} + ........... + {\left( { - 1} \right)^r}{}^n{C_r}{x^{n - r}}{y^r}................. + {\left( { - 1} \right)^n}{}^n{C_n}{y^n}\]
Consider,
\[
   \Rightarrow {\left( {\sqrt 2 + 1} \right)^6} + {\left( {\sqrt 2 - 1} \right)^6} = \left[ {{}^6{C_0}{{\left( {\sqrt 2 } \right)}^6} + {}^6{C_1}{{\left( {\sqrt 2 } \right)}^5}{{\left( 1 \right)}^1} + {}^6{C_2}{{\left( {\sqrt 2 } \right)}^4}{{\left( 1 \right)}^2} + {}^6{C_3}{{\left( {\sqrt 2 } \right)}^3}{{\left( 1 \right)}^3} + {}^6{C_4}{{\left( {\sqrt 2 } \right)}^2}{{\left( 1 \right)}^4} + {}^6{C_5}{{\left( {\sqrt 2 } \right)}^1}{{\left( 1 \right)}^5} + {}^6{C_6}{{\left( 1 \right)}^6}} \right] - \\
  {\text{ }}\left[ {{}^6{C_0}{{\left( {\sqrt 2 } \right)}^6} - {}^6{C_1}{{\left( {\sqrt 2 } \right)}^5}{{\left( 1 \right)}^1} - {}^6{C_2}{{\left( {\sqrt 2 } \right)}^4}{{\left( 1 \right)}^2} - {}^6{C_3}{{\left( {\sqrt 2 } \right)}^3}{{\left( 1 \right)}^3} - {}^6{C_4}{{\left( {\sqrt 2 } \right)}^2}{{\left( 1 \right)}^4} - {}^6{C_5}{{\left( {\sqrt 2 } \right)}^1}{{\left( 1 \right)}^5} - {}^6{C_6}{{\left( 1 \right)}^6}} \right] \\
\]
Cancelling the common terms, we get
\[
   \Rightarrow {\left( {\sqrt 2 + 1} \right)^6} + {\left( {\sqrt 2 - 1} \right)^6} = 2\left[ {{}^6{C_0}{{\left( {\sqrt 2 } \right)}^6} + {}^6{C_2}{{\left( {\sqrt 2 } \right)}^4}{{\left( 1 \right)}^2} + {}^6{C_4}{{\left( {\sqrt 2 } \right)}^2}{{\left( 1 \right)}^4} + {}^6{C_6}{{\left( 1 \right)}^6}} \right] \\
   \Rightarrow {\left( {\sqrt 2 + 1} \right)^6} + {\left( {\sqrt 2 - 1} \right)^6} = 2\left[ {{}^6{C_0} \times 8 + {}^6{C_2} \times 4 + {}^6{C_4} \times 2 + {}^6{C_6} \times 1} \right] \\
   \Rightarrow {\left( {\sqrt 2 + 1} \right)^6} + {\left( {\sqrt 2 - 1} \right)^6} = 2\left[ {1 \times 8 + 15 \times 4 + {}^6{C_4} \times 2 + 1 \times 1} \right] \\
   \Rightarrow {\left( {\sqrt 2 + 1} \right)^6} + {\left( {\sqrt 2 - 1} \right)^6} = 2\left[ {99} \right] \\
   \Rightarrow {\left( {\sqrt 2 + 1} \right)^6} + {\left( {\sqrt 2 - 1} \right)^6} = 198{\text{ }} \\
  {\text{ }} \\
\]
But we have \[{\left( {\sqrt 2 + 1} \right)^6} + {\left( {\sqrt 2 - 1} \right)^6} = I + F + f\]. So, we get
\[
   \Rightarrow I + F + f = 198 \\
  {\text{ }} \\
\]
Here \[I\]is an integer and 198 is an integer. And \[I + F + f = 198\] is only possible when \[F + f\] is an integer.
But we have \[0 < F < 1\] and \[0 < f < 1\]. Adding up them, we get
\[
   \Rightarrow 0 + 0 < F + f < 1 + 1 \\
   \Rightarrow 0 < F + f < 2 \\
\]
We know that the only 1 is the integer which is greater than 0 and lesser than 2. So, the value of \[F + f = 1\].
Therefore, we get
\[
   \Rightarrow I + 1 = 198 \\
  \therefore I = 198 - 1 = 197 \\
\]
Hence, the integral part of \[{\left( {\sqrt 2 + 1} \right)^6}\] is 197.
Thus, the correct option is A. 197

Note: Here we have added \[{\left( {\sqrt 2 - 1} \right)^6}\]to the given binomial since its value is less than one and greater than zero i.e., \[0 < {\left( {\sqrt 2 - 1} \right)^6} < 1\]. Remember this method for finding the integral parts of the binomials.

Recently Updated Pages