
The integral part of \[{\left( {\sqrt 2 + 1} \right)^6}\] is
A. 197
B. 196
C. 175
D. 176
Answer
597k+ views
Hint: First of all, consider the given binomial as the sum of integral part and fractional part. Then add up this binomial with its contemporary binomial to find the integral part of the given binomial, use the binomial theorem for the expansion of the binomials. So, use this concept to reach the solution of the given problem.
Complete step-by-step answer:
Let the \[{\left( {\sqrt 2 + 1} \right)^6} = I + F\]
Where, \[I\] is an integer and \[F\] is a fractional part i.e., \[0 < F < 1\]
Let \[{\left( {\sqrt 2 - 1} \right)^6} = f\]
Where, \[f\] is a fractional part i.e., \[0 < f < 1\] and hence, \[0 < {\left( {\sqrt 2 - 1} \right)^6} < 1\].
We know that \[{\left( {x + y} \right)^n} = {}^n{C_0}{x^n} + {}^n{C_1}{x^{n - 1}}y + {}^n{C_2}{x^{n - 2}}{y^2} + ........... + {}^n{C_r}{x^{n - r}}{y^r}................ + {}^n{C_n}{y^n}\] and \[{\left( {x - y} \right)^n} = {}^n{C_0}{x^n} + {\left( { - 1} \right)^1}{}^n{C_1}{x^{n - 1}}y + {\left( { - 1} \right)^2}{}^n{C_2}{x^{n - 2}}{y^2} + ........... + {\left( { - 1} \right)^r}{}^n{C_r}{x^{n - r}}{y^r}................. + {\left( { - 1} \right)^n}{}^n{C_n}{y^n}\]
Consider,
\[
\Rightarrow {\left( {\sqrt 2 + 1} \right)^6} + {\left( {\sqrt 2 - 1} \right)^6} = \left[ {{}^6{C_0}{{\left( {\sqrt 2 } \right)}^6} + {}^6{C_1}{{\left( {\sqrt 2 } \right)}^5}{{\left( 1 \right)}^1} + {}^6{C_2}{{\left( {\sqrt 2 } \right)}^4}{{\left( 1 \right)}^2} + {}^6{C_3}{{\left( {\sqrt 2 } \right)}^3}{{\left( 1 \right)}^3} + {}^6{C_4}{{\left( {\sqrt 2 } \right)}^2}{{\left( 1 \right)}^4} + {}^6{C_5}{{\left( {\sqrt 2 } \right)}^1}{{\left( 1 \right)}^5} + {}^6{C_6}{{\left( 1 \right)}^6}} \right] - \\
{\text{ }}\left[ {{}^6{C_0}{{\left( {\sqrt 2 } \right)}^6} - {}^6{C_1}{{\left( {\sqrt 2 } \right)}^5}{{\left( 1 \right)}^1} - {}^6{C_2}{{\left( {\sqrt 2 } \right)}^4}{{\left( 1 \right)}^2} - {}^6{C_3}{{\left( {\sqrt 2 } \right)}^3}{{\left( 1 \right)}^3} - {}^6{C_4}{{\left( {\sqrt 2 } \right)}^2}{{\left( 1 \right)}^4} - {}^6{C_5}{{\left( {\sqrt 2 } \right)}^1}{{\left( 1 \right)}^5} - {}^6{C_6}{{\left( 1 \right)}^6}} \right] \\
\]
Cancelling the common terms, we get
\[
\Rightarrow {\left( {\sqrt 2 + 1} \right)^6} + {\left( {\sqrt 2 - 1} \right)^6} = 2\left[ {{}^6{C_0}{{\left( {\sqrt 2 } \right)}^6} + {}^6{C_2}{{\left( {\sqrt 2 } \right)}^4}{{\left( 1 \right)}^2} + {}^6{C_4}{{\left( {\sqrt 2 } \right)}^2}{{\left( 1 \right)}^4} + {}^6{C_6}{{\left( 1 \right)}^6}} \right] \\
\Rightarrow {\left( {\sqrt 2 + 1} \right)^6} + {\left( {\sqrt 2 - 1} \right)^6} = 2\left[ {{}^6{C_0} \times 8 + {}^6{C_2} \times 4 + {}^6{C_4} \times 2 + {}^6{C_6} \times 1} \right] \\
\Rightarrow {\left( {\sqrt 2 + 1} \right)^6} + {\left( {\sqrt 2 - 1} \right)^6} = 2\left[ {1 \times 8 + 15 \times 4 + {}^6{C_4} \times 2 + 1 \times 1} \right] \\
\Rightarrow {\left( {\sqrt 2 + 1} \right)^6} + {\left( {\sqrt 2 - 1} \right)^6} = 2\left[ {99} \right] \\
\Rightarrow {\left( {\sqrt 2 + 1} \right)^6} + {\left( {\sqrt 2 - 1} \right)^6} = 198{\text{ }} \\
{\text{ }} \\
\]
But we have \[{\left( {\sqrt 2 + 1} \right)^6} + {\left( {\sqrt 2 - 1} \right)^6} = I + F + f\]. So, we get
\[
\Rightarrow I + F + f = 198 \\
{\text{ }} \\
\]
Here \[I\]is an integer and 198 is an integer. And \[I + F + f = 198\] is only possible when \[F + f\] is an integer.
But we have \[0 < F < 1\] and \[0 < f < 1\]. Adding up them, we get
\[
\Rightarrow 0 + 0 < F + f < 1 + 1 \\
\Rightarrow 0 < F + f < 2 \\
\]
We know that the only 1 is the integer which is greater than 0 and lesser than 2. So, the value of \[F + f = 1\].
Therefore, we get
\[
\Rightarrow I + 1 = 198 \\
\therefore I = 198 - 1 = 197 \\
\]
Hence, the integral part of \[{\left( {\sqrt 2 + 1} \right)^6}\] is 197.
Thus, the correct option is A. 197
Note: Here we have added \[{\left( {\sqrt 2 - 1} \right)^6}\]to the given binomial since its value is less than one and greater than zero i.e., \[0 < {\left( {\sqrt 2 - 1} \right)^6} < 1\]. Remember this method for finding the integral parts of the binomials.
Complete step-by-step answer:
Let the \[{\left( {\sqrt 2 + 1} \right)^6} = I + F\]
Where, \[I\] is an integer and \[F\] is a fractional part i.e., \[0 < F < 1\]
Let \[{\left( {\sqrt 2 - 1} \right)^6} = f\]
Where, \[f\] is a fractional part i.e., \[0 < f < 1\] and hence, \[0 < {\left( {\sqrt 2 - 1} \right)^6} < 1\].
We know that \[{\left( {x + y} \right)^n} = {}^n{C_0}{x^n} + {}^n{C_1}{x^{n - 1}}y + {}^n{C_2}{x^{n - 2}}{y^2} + ........... + {}^n{C_r}{x^{n - r}}{y^r}................ + {}^n{C_n}{y^n}\] and \[{\left( {x - y} \right)^n} = {}^n{C_0}{x^n} + {\left( { - 1} \right)^1}{}^n{C_1}{x^{n - 1}}y + {\left( { - 1} \right)^2}{}^n{C_2}{x^{n - 2}}{y^2} + ........... + {\left( { - 1} \right)^r}{}^n{C_r}{x^{n - r}}{y^r}................. + {\left( { - 1} \right)^n}{}^n{C_n}{y^n}\]
Consider,
\[
\Rightarrow {\left( {\sqrt 2 + 1} \right)^6} + {\left( {\sqrt 2 - 1} \right)^6} = \left[ {{}^6{C_0}{{\left( {\sqrt 2 } \right)}^6} + {}^6{C_1}{{\left( {\sqrt 2 } \right)}^5}{{\left( 1 \right)}^1} + {}^6{C_2}{{\left( {\sqrt 2 } \right)}^4}{{\left( 1 \right)}^2} + {}^6{C_3}{{\left( {\sqrt 2 } \right)}^3}{{\left( 1 \right)}^3} + {}^6{C_4}{{\left( {\sqrt 2 } \right)}^2}{{\left( 1 \right)}^4} + {}^6{C_5}{{\left( {\sqrt 2 } \right)}^1}{{\left( 1 \right)}^5} + {}^6{C_6}{{\left( 1 \right)}^6}} \right] - \\
{\text{ }}\left[ {{}^6{C_0}{{\left( {\sqrt 2 } \right)}^6} - {}^6{C_1}{{\left( {\sqrt 2 } \right)}^5}{{\left( 1 \right)}^1} - {}^6{C_2}{{\left( {\sqrt 2 } \right)}^4}{{\left( 1 \right)}^2} - {}^6{C_3}{{\left( {\sqrt 2 } \right)}^3}{{\left( 1 \right)}^3} - {}^6{C_4}{{\left( {\sqrt 2 } \right)}^2}{{\left( 1 \right)}^4} - {}^6{C_5}{{\left( {\sqrt 2 } \right)}^1}{{\left( 1 \right)}^5} - {}^6{C_6}{{\left( 1 \right)}^6}} \right] \\
\]
Cancelling the common terms, we get
\[
\Rightarrow {\left( {\sqrt 2 + 1} \right)^6} + {\left( {\sqrt 2 - 1} \right)^6} = 2\left[ {{}^6{C_0}{{\left( {\sqrt 2 } \right)}^6} + {}^6{C_2}{{\left( {\sqrt 2 } \right)}^4}{{\left( 1 \right)}^2} + {}^6{C_4}{{\left( {\sqrt 2 } \right)}^2}{{\left( 1 \right)}^4} + {}^6{C_6}{{\left( 1 \right)}^6}} \right] \\
\Rightarrow {\left( {\sqrt 2 + 1} \right)^6} + {\left( {\sqrt 2 - 1} \right)^6} = 2\left[ {{}^6{C_0} \times 8 + {}^6{C_2} \times 4 + {}^6{C_4} \times 2 + {}^6{C_6} \times 1} \right] \\
\Rightarrow {\left( {\sqrt 2 + 1} \right)^6} + {\left( {\sqrt 2 - 1} \right)^6} = 2\left[ {1 \times 8 + 15 \times 4 + {}^6{C_4} \times 2 + 1 \times 1} \right] \\
\Rightarrow {\left( {\sqrt 2 + 1} \right)^6} + {\left( {\sqrt 2 - 1} \right)^6} = 2\left[ {99} \right] \\
\Rightarrow {\left( {\sqrt 2 + 1} \right)^6} + {\left( {\sqrt 2 - 1} \right)^6} = 198{\text{ }} \\
{\text{ }} \\
\]
But we have \[{\left( {\sqrt 2 + 1} \right)^6} + {\left( {\sqrt 2 - 1} \right)^6} = I + F + f\]. So, we get
\[
\Rightarrow I + F + f = 198 \\
{\text{ }} \\
\]
Here \[I\]is an integer and 198 is an integer. And \[I + F + f = 198\] is only possible when \[F + f\] is an integer.
But we have \[0 < F < 1\] and \[0 < f < 1\]. Adding up them, we get
\[
\Rightarrow 0 + 0 < F + f < 1 + 1 \\
\Rightarrow 0 < F + f < 2 \\
\]
We know that the only 1 is the integer which is greater than 0 and lesser than 2. So, the value of \[F + f = 1\].
Therefore, we get
\[
\Rightarrow I + 1 = 198 \\
\therefore I = 198 - 1 = 197 \\
\]
Hence, the integral part of \[{\left( {\sqrt 2 + 1} \right)^6}\] is 197.
Thus, the correct option is A. 197
Note: Here we have added \[{\left( {\sqrt 2 - 1} \right)^6}\]to the given binomial since its value is less than one and greater than zero i.e., \[0 < {\left( {\sqrt 2 - 1} \right)^6} < 1\]. Remember this method for finding the integral parts of the binomials.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

