
The integral part of \[{\left( {\sqrt 2 + 1} \right)^6}\] is
A. 197
B. 196
C. 175
D. 176
Answer
581.7k+ views
Hint: First of all, consider the given binomial as the sum of integral part and fractional part. Then add up this binomial with its contemporary binomial to find the integral part of the given binomial, use the binomial theorem for the expansion of the binomials. So, use this concept to reach the solution of the given problem.
Complete step-by-step answer:
Let the \[{\left( {\sqrt 2 + 1} \right)^6} = I + F\]
Where, \[I\] is an integer and \[F\] is a fractional part i.e., \[0 < F < 1\]
Let \[{\left( {\sqrt 2 - 1} \right)^6} = f\]
Where, \[f\] is a fractional part i.e., \[0 < f < 1\] and hence, \[0 < {\left( {\sqrt 2 - 1} \right)^6} < 1\].
We know that \[{\left( {x + y} \right)^n} = {}^n{C_0}{x^n} + {}^n{C_1}{x^{n - 1}}y + {}^n{C_2}{x^{n - 2}}{y^2} + ........... + {}^n{C_r}{x^{n - r}}{y^r}................ + {}^n{C_n}{y^n}\] and \[{\left( {x - y} \right)^n} = {}^n{C_0}{x^n} + {\left( { - 1} \right)^1}{}^n{C_1}{x^{n - 1}}y + {\left( { - 1} \right)^2}{}^n{C_2}{x^{n - 2}}{y^2} + ........... + {\left( { - 1} \right)^r}{}^n{C_r}{x^{n - r}}{y^r}................. + {\left( { - 1} \right)^n}{}^n{C_n}{y^n}\]
Consider,
\[
\Rightarrow {\left( {\sqrt 2 + 1} \right)^6} + {\left( {\sqrt 2 - 1} \right)^6} = \left[ {{}^6{C_0}{{\left( {\sqrt 2 } \right)}^6} + {}^6{C_1}{{\left( {\sqrt 2 } \right)}^5}{{\left( 1 \right)}^1} + {}^6{C_2}{{\left( {\sqrt 2 } \right)}^4}{{\left( 1 \right)}^2} + {}^6{C_3}{{\left( {\sqrt 2 } \right)}^3}{{\left( 1 \right)}^3} + {}^6{C_4}{{\left( {\sqrt 2 } \right)}^2}{{\left( 1 \right)}^4} + {}^6{C_5}{{\left( {\sqrt 2 } \right)}^1}{{\left( 1 \right)}^5} + {}^6{C_6}{{\left( 1 \right)}^6}} \right] - \\
{\text{ }}\left[ {{}^6{C_0}{{\left( {\sqrt 2 } \right)}^6} - {}^6{C_1}{{\left( {\sqrt 2 } \right)}^5}{{\left( 1 \right)}^1} - {}^6{C_2}{{\left( {\sqrt 2 } \right)}^4}{{\left( 1 \right)}^2} - {}^6{C_3}{{\left( {\sqrt 2 } \right)}^3}{{\left( 1 \right)}^3} - {}^6{C_4}{{\left( {\sqrt 2 } \right)}^2}{{\left( 1 \right)}^4} - {}^6{C_5}{{\left( {\sqrt 2 } \right)}^1}{{\left( 1 \right)}^5} - {}^6{C_6}{{\left( 1 \right)}^6}} \right] \\
\]
Cancelling the common terms, we get
\[
\Rightarrow {\left( {\sqrt 2 + 1} \right)^6} + {\left( {\sqrt 2 - 1} \right)^6} = 2\left[ {{}^6{C_0}{{\left( {\sqrt 2 } \right)}^6} + {}^6{C_2}{{\left( {\sqrt 2 } \right)}^4}{{\left( 1 \right)}^2} + {}^6{C_4}{{\left( {\sqrt 2 } \right)}^2}{{\left( 1 \right)}^4} + {}^6{C_6}{{\left( 1 \right)}^6}} \right] \\
\Rightarrow {\left( {\sqrt 2 + 1} \right)^6} + {\left( {\sqrt 2 - 1} \right)^6} = 2\left[ {{}^6{C_0} \times 8 + {}^6{C_2} \times 4 + {}^6{C_4} \times 2 + {}^6{C_6} \times 1} \right] \\
\Rightarrow {\left( {\sqrt 2 + 1} \right)^6} + {\left( {\sqrt 2 - 1} \right)^6} = 2\left[ {1 \times 8 + 15 \times 4 + {}^6{C_4} \times 2 + 1 \times 1} \right] \\
\Rightarrow {\left( {\sqrt 2 + 1} \right)^6} + {\left( {\sqrt 2 - 1} \right)^6} = 2\left[ {99} \right] \\
\Rightarrow {\left( {\sqrt 2 + 1} \right)^6} + {\left( {\sqrt 2 - 1} \right)^6} = 198{\text{ }} \\
{\text{ }} \\
\]
But we have \[{\left( {\sqrt 2 + 1} \right)^6} + {\left( {\sqrt 2 - 1} \right)^6} = I + F + f\]. So, we get
\[
\Rightarrow I + F + f = 198 \\
{\text{ }} \\
\]
Here \[I\]is an integer and 198 is an integer. And \[I + F + f = 198\] is only possible when \[F + f\] is an integer.
But we have \[0 < F < 1\] and \[0 < f < 1\]. Adding up them, we get
\[
\Rightarrow 0 + 0 < F + f < 1 + 1 \\
\Rightarrow 0 < F + f < 2 \\
\]
We know that the only 1 is the integer which is greater than 0 and lesser than 2. So, the value of \[F + f = 1\].
Therefore, we get
\[
\Rightarrow I + 1 = 198 \\
\therefore I = 198 - 1 = 197 \\
\]
Hence, the integral part of \[{\left( {\sqrt 2 + 1} \right)^6}\] is 197.
Thus, the correct option is A. 197
Note: Here we have added \[{\left( {\sqrt 2 - 1} \right)^6}\]to the given binomial since its value is less than one and greater than zero i.e., \[0 < {\left( {\sqrt 2 - 1} \right)^6} < 1\]. Remember this method for finding the integral parts of the binomials.
Complete step-by-step answer:
Let the \[{\left( {\sqrt 2 + 1} \right)^6} = I + F\]
Where, \[I\] is an integer and \[F\] is a fractional part i.e., \[0 < F < 1\]
Let \[{\left( {\sqrt 2 - 1} \right)^6} = f\]
Where, \[f\] is a fractional part i.e., \[0 < f < 1\] and hence, \[0 < {\left( {\sqrt 2 - 1} \right)^6} < 1\].
We know that \[{\left( {x + y} \right)^n} = {}^n{C_0}{x^n} + {}^n{C_1}{x^{n - 1}}y + {}^n{C_2}{x^{n - 2}}{y^2} + ........... + {}^n{C_r}{x^{n - r}}{y^r}................ + {}^n{C_n}{y^n}\] and \[{\left( {x - y} \right)^n} = {}^n{C_0}{x^n} + {\left( { - 1} \right)^1}{}^n{C_1}{x^{n - 1}}y + {\left( { - 1} \right)^2}{}^n{C_2}{x^{n - 2}}{y^2} + ........... + {\left( { - 1} \right)^r}{}^n{C_r}{x^{n - r}}{y^r}................. + {\left( { - 1} \right)^n}{}^n{C_n}{y^n}\]
Consider,
\[
\Rightarrow {\left( {\sqrt 2 + 1} \right)^6} + {\left( {\sqrt 2 - 1} \right)^6} = \left[ {{}^6{C_0}{{\left( {\sqrt 2 } \right)}^6} + {}^6{C_1}{{\left( {\sqrt 2 } \right)}^5}{{\left( 1 \right)}^1} + {}^6{C_2}{{\left( {\sqrt 2 } \right)}^4}{{\left( 1 \right)}^2} + {}^6{C_3}{{\left( {\sqrt 2 } \right)}^3}{{\left( 1 \right)}^3} + {}^6{C_4}{{\left( {\sqrt 2 } \right)}^2}{{\left( 1 \right)}^4} + {}^6{C_5}{{\left( {\sqrt 2 } \right)}^1}{{\left( 1 \right)}^5} + {}^6{C_6}{{\left( 1 \right)}^6}} \right] - \\
{\text{ }}\left[ {{}^6{C_0}{{\left( {\sqrt 2 } \right)}^6} - {}^6{C_1}{{\left( {\sqrt 2 } \right)}^5}{{\left( 1 \right)}^1} - {}^6{C_2}{{\left( {\sqrt 2 } \right)}^4}{{\left( 1 \right)}^2} - {}^6{C_3}{{\left( {\sqrt 2 } \right)}^3}{{\left( 1 \right)}^3} - {}^6{C_4}{{\left( {\sqrt 2 } \right)}^2}{{\left( 1 \right)}^4} - {}^6{C_5}{{\left( {\sqrt 2 } \right)}^1}{{\left( 1 \right)}^5} - {}^6{C_6}{{\left( 1 \right)}^6}} \right] \\
\]
Cancelling the common terms, we get
\[
\Rightarrow {\left( {\sqrt 2 + 1} \right)^6} + {\left( {\sqrt 2 - 1} \right)^6} = 2\left[ {{}^6{C_0}{{\left( {\sqrt 2 } \right)}^6} + {}^6{C_2}{{\left( {\sqrt 2 } \right)}^4}{{\left( 1 \right)}^2} + {}^6{C_4}{{\left( {\sqrt 2 } \right)}^2}{{\left( 1 \right)}^4} + {}^6{C_6}{{\left( 1 \right)}^6}} \right] \\
\Rightarrow {\left( {\sqrt 2 + 1} \right)^6} + {\left( {\sqrt 2 - 1} \right)^6} = 2\left[ {{}^6{C_0} \times 8 + {}^6{C_2} \times 4 + {}^6{C_4} \times 2 + {}^6{C_6} \times 1} \right] \\
\Rightarrow {\left( {\sqrt 2 + 1} \right)^6} + {\left( {\sqrt 2 - 1} \right)^6} = 2\left[ {1 \times 8 + 15 \times 4 + {}^6{C_4} \times 2 + 1 \times 1} \right] \\
\Rightarrow {\left( {\sqrt 2 + 1} \right)^6} + {\left( {\sqrt 2 - 1} \right)^6} = 2\left[ {99} \right] \\
\Rightarrow {\left( {\sqrt 2 + 1} \right)^6} + {\left( {\sqrt 2 - 1} \right)^6} = 198{\text{ }} \\
{\text{ }} \\
\]
But we have \[{\left( {\sqrt 2 + 1} \right)^6} + {\left( {\sqrt 2 - 1} \right)^6} = I + F + f\]. So, we get
\[
\Rightarrow I + F + f = 198 \\
{\text{ }} \\
\]
Here \[I\]is an integer and 198 is an integer. And \[I + F + f = 198\] is only possible when \[F + f\] is an integer.
But we have \[0 < F < 1\] and \[0 < f < 1\]. Adding up them, we get
\[
\Rightarrow 0 + 0 < F + f < 1 + 1 \\
\Rightarrow 0 < F + f < 2 \\
\]
We know that the only 1 is the integer which is greater than 0 and lesser than 2. So, the value of \[F + f = 1\].
Therefore, we get
\[
\Rightarrow I + 1 = 198 \\
\therefore I = 198 - 1 = 197 \\
\]
Hence, the integral part of \[{\left( {\sqrt 2 + 1} \right)^6}\] is 197.
Thus, the correct option is A. 197
Note: Here we have added \[{\left( {\sqrt 2 - 1} \right)^6}\]to the given binomial since its value is less than one and greater than zero i.e., \[0 < {\left( {\sqrt 2 - 1} \right)^6} < 1\]. Remember this method for finding the integral parts of the binomials.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

