
The integral \[\int\limits_{\dfrac{\pi }{4}}^{\dfrac{\pi }{6}} {\dfrac{{dx}}{{\sin 2x\left( {{{\tan }^5}x + {{\cot }^5}x} \right)}}} \] equals :
A.\[\dfrac{1}{{10}}\left( {\dfrac{\pi }{4} - {{\tan }^{ - 1}}\left( {\dfrac{1}{{9\sqrt 3 }}} \right)} \right)\]
B.\[\dfrac{1}{{10}}\left( {\dfrac{\pi }{4} - {{\tan }^{ - 1}}\left( {\dfrac{1}{{3\sqrt 3 }}} \right)} \right)\]
C.\[\dfrac{\pi }{{10}}\]
D.\[\dfrac{1}{{20}}{\tan ^{ - 1}}\left( {\dfrac{1}{{9\sqrt 3 }}} \right)\]
Answer
510k+ views
Hint: Firstly we simplify the denominator by using the formula of \[\sin 2x = \dfrac{{2\tan x}}{{1 + {{\tan }^2}x}}\], then we simplify the fraction further, and then we substitute the value of \[{\tan ^5}x\] as z and we change the limits and then solve the integral to get the required answer.
Complete step-by-step answer:
\[\int\limits_{\dfrac{\pi }{4}}^{\dfrac{\pi }{6}} {\dfrac{{dx}}{{\sin 2x\left( {{{\tan }^5}x + {{\cot }^5}x} \right)}}} \].
We have to apply the trigonometric formula,\[\sin 2x = \dfrac{{2\tan x}}{{1 + {{\tan }^2}x}}\].
Using this formula, we get
\[\int\limits_{\dfrac{\pi }{4}}^{\dfrac{\pi }{6}} {\dfrac{{dx}}{{\dfrac{{2\tan x}}{{1 + {{\tan }^2}x}}\left( {{{\tan }^5}x + {{\cot }^5}x} \right)}}} \]
Now we apply the formula \[({\sec ^2}x = 1 + {\tan ^2}x)\], we get,
\[ = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{\pi }{6}} {\dfrac{{{{\sec }^2}xdx}}{{2\tan x\left( {{{\tan }^5}x + {{\cot }^5}x} \right)}}} \]
\[Since{\text{ }}we{\text{ }}know{\text{ }}that{\text{ }}\cot x = \dfrac{1}{{\tan x}};{\text{ }}therefore,{\text{ }}{\cot ^5}x = {\left( {\dfrac{1}{{\tan x}}} \right)^5} = \dfrac{1}{{{{\tan }^5}x}}\]
\[ = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{\pi }{6}} {\dfrac{{{{\sec }^2}xdx}}{{2\tan x\left( {{{\tan }^5}x + \dfrac{1}{{{{\tan }^5}x}}} \right)}}} \]
Multiplying the numerator and denominator by \[{\tan ^5}x\], we get,
\[ = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{\pi }{6}} {\dfrac{{{{\tan }^5}x \cdot {{\sec }^2}xdx}}{{2\tan x\left( {{{\tan }^{10}}x + 1} \right)}}} \]
On further simplifying we get,
\[ = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{\pi }{6}} {\dfrac{{{{\tan }^4}x \cdot {{\sec }^2}xdx}}{{2\left( {{{\tan }^{10}}x + 1} \right)}}} \]
Now, we put \[{\tan ^5}x = z............(1)\]
Differentiating both side of this we obtain,
\[
5{\tan ^4}x \cdot {\sec ^2}xdx = dz \\
\Rightarrow {\tan ^4}x \cdot {\sec ^2}xdx = \dfrac{{dz}}{5} \\
\]
The limit of the integration will change,
\[\therefore \]From Eq. (1) we can get,
For \[x = \dfrac{\pi }{6}\], the value of z will be, \[z = {3^{ - \dfrac{5}{2}}}\left[
\because \tan \dfrac{\pi }{6} = \dfrac{1}{{\sqrt 3 }} \\
\therefore {\tan ^5}\dfrac{\pi }{6} = {\left( {\dfrac{1}{{{3^{\dfrac{1}{2}}}}}} \right)^5} = {3^{ - \dfrac{5}{2}}} \\ \right]\]
Again, for \[x = \dfrac{\pi }{4}\], the value of z will be, \[z = 1\left[
\because \tan \dfrac{\pi }{4} = 1 \\
\therefore {\tan ^5}\dfrac{\pi }{4} = 1 \\ \right]\]
Now, we write the integration in terms of z, which is
\[
\int\limits_1^{{3^{\dfrac{{ - 5}}{2}}}} {\dfrac{1}{{2({z^2} + 1)}} \cdot \dfrac{{dz}}{5}} \\
= \dfrac{1}{{10}}\int\limits_1^{{3^{\dfrac{{ - 5}}{2}}}} {\dfrac{{dz}}{{({z^2} + 1)}}} \\
\] [ We know that we can write this for constant i.e. \[\int {5f(x)dx = 5\int {f(x)dx} } \]where f(x) is a function of x. ]
Here, we apply some formula of integration, which is \[\int\limits_a^b {\dfrac{{dx}}{{{x^2} + {m^2}}}} = \left[ {\dfrac{1}{m}{{\tan }^{ - 1}}\dfrac{x}{m}} \right]_a^b\], where a, b and m are constant.
\[\therefore \] We obtain the integration as –
\[
\dfrac{1}{{10}}\left[ {\dfrac{1}{1}{{\tan }^{ - 1}}\dfrac{z}{1}} \right]_1^{{3^{ - \dfrac{5}{2}}}}\left[ {\because Here{\text{ }}m = 1{\text{ }}and{\text{ }}a = 1,{\text{ }}b = {3^{ - \dfrac{5}{2}}}} \right] \\
= \dfrac{1}{{10}}\left[ {{{\tan }^{ - 1}}{3^{ - \dfrac{5}{2}}} - {{\tan }^{ - 1}}1} \right] \\
= \dfrac{1}{{10}}\left( {{{\tan }^{ - 1}}\dfrac{1}{{3\sqrt 3 }} - \dfrac{\pi }{4}} \right) \\
\]
Note: 1.In this problem, we use various types of formula and properties of trigonometry and integration.We have to remember all the formulas and properties.
2.Also we have to know the values of \[\tan \dfrac{\pi }{6}\] and \[\tan \dfrac{\pi }{4}\].
3.We solve this problem by putting \[\tan x = \dfrac{{\sin x}}{{\cos x}}\] and \[\cot x = \dfrac{{\cos x}}{{\sin x}}\], but this method is too difficult for us.
4.We also use the relation between tan x and cot x ; tan x and sin x ; tan x and sec x.
Complete step-by-step answer:
\[\int\limits_{\dfrac{\pi }{4}}^{\dfrac{\pi }{6}} {\dfrac{{dx}}{{\sin 2x\left( {{{\tan }^5}x + {{\cot }^5}x} \right)}}} \].
We have to apply the trigonometric formula,\[\sin 2x = \dfrac{{2\tan x}}{{1 + {{\tan }^2}x}}\].
Using this formula, we get
\[\int\limits_{\dfrac{\pi }{4}}^{\dfrac{\pi }{6}} {\dfrac{{dx}}{{\dfrac{{2\tan x}}{{1 + {{\tan }^2}x}}\left( {{{\tan }^5}x + {{\cot }^5}x} \right)}}} \]
Now we apply the formula \[({\sec ^2}x = 1 + {\tan ^2}x)\], we get,
\[ = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{\pi }{6}} {\dfrac{{{{\sec }^2}xdx}}{{2\tan x\left( {{{\tan }^5}x + {{\cot }^5}x} \right)}}} \]
\[Since{\text{ }}we{\text{ }}know{\text{ }}that{\text{ }}\cot x = \dfrac{1}{{\tan x}};{\text{ }}therefore,{\text{ }}{\cot ^5}x = {\left( {\dfrac{1}{{\tan x}}} \right)^5} = \dfrac{1}{{{{\tan }^5}x}}\]
\[ = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{\pi }{6}} {\dfrac{{{{\sec }^2}xdx}}{{2\tan x\left( {{{\tan }^5}x + \dfrac{1}{{{{\tan }^5}x}}} \right)}}} \]
Multiplying the numerator and denominator by \[{\tan ^5}x\], we get,
\[ = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{\pi }{6}} {\dfrac{{{{\tan }^5}x \cdot {{\sec }^2}xdx}}{{2\tan x\left( {{{\tan }^{10}}x + 1} \right)}}} \]
On further simplifying we get,
\[ = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{\pi }{6}} {\dfrac{{{{\tan }^4}x \cdot {{\sec }^2}xdx}}{{2\left( {{{\tan }^{10}}x + 1} \right)}}} \]
Now, we put \[{\tan ^5}x = z............(1)\]
Differentiating both side of this we obtain,
\[
5{\tan ^4}x \cdot {\sec ^2}xdx = dz \\
\Rightarrow {\tan ^4}x \cdot {\sec ^2}xdx = \dfrac{{dz}}{5} \\
\]
The limit of the integration will change,
\[\therefore \]From Eq. (1) we can get,
For \[x = \dfrac{\pi }{6}\], the value of z will be, \[z = {3^{ - \dfrac{5}{2}}}\left[
\because \tan \dfrac{\pi }{6} = \dfrac{1}{{\sqrt 3 }} \\
\therefore {\tan ^5}\dfrac{\pi }{6} = {\left( {\dfrac{1}{{{3^{\dfrac{1}{2}}}}}} \right)^5} = {3^{ - \dfrac{5}{2}}} \\ \right]\]
Again, for \[x = \dfrac{\pi }{4}\], the value of z will be, \[z = 1\left[
\because \tan \dfrac{\pi }{4} = 1 \\
\therefore {\tan ^5}\dfrac{\pi }{4} = 1 \\ \right]\]
Now, we write the integration in terms of z, which is
\[
\int\limits_1^{{3^{\dfrac{{ - 5}}{2}}}} {\dfrac{1}{{2({z^2} + 1)}} \cdot \dfrac{{dz}}{5}} \\
= \dfrac{1}{{10}}\int\limits_1^{{3^{\dfrac{{ - 5}}{2}}}} {\dfrac{{dz}}{{({z^2} + 1)}}} \\
\] [ We know that we can write this for constant i.e. \[\int {5f(x)dx = 5\int {f(x)dx} } \]where f(x) is a function of x. ]
Here, we apply some formula of integration, which is \[\int\limits_a^b {\dfrac{{dx}}{{{x^2} + {m^2}}}} = \left[ {\dfrac{1}{m}{{\tan }^{ - 1}}\dfrac{x}{m}} \right]_a^b\], where a, b and m are constant.
\[\therefore \] We obtain the integration as –
\[
\dfrac{1}{{10}}\left[ {\dfrac{1}{1}{{\tan }^{ - 1}}\dfrac{z}{1}} \right]_1^{{3^{ - \dfrac{5}{2}}}}\left[ {\because Here{\text{ }}m = 1{\text{ }}and{\text{ }}a = 1,{\text{ }}b = {3^{ - \dfrac{5}{2}}}} \right] \\
= \dfrac{1}{{10}}\left[ {{{\tan }^{ - 1}}{3^{ - \dfrac{5}{2}}} - {{\tan }^{ - 1}}1} \right] \\
= \dfrac{1}{{10}}\left( {{{\tan }^{ - 1}}\dfrac{1}{{3\sqrt 3 }} - \dfrac{\pi }{4}} \right) \\
\]
Note: 1.In this problem, we use various types of formula and properties of trigonometry and integration.We have to remember all the formulas and properties.
2.Also we have to know the values of \[\tan \dfrac{\pi }{6}\] and \[\tan \dfrac{\pi }{4}\].
3.We solve this problem by putting \[\tan x = \dfrac{{\sin x}}{{\cos x}}\] and \[\cot x = \dfrac{{\cos x}}{{\sin x}}\], but this method is too difficult for us.
4.We also use the relation between tan x and cot x ; tan x and sin x ; tan x and sec x.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Economics: Engaging Questions & Answers for Success

Trending doubts
Draw a labelled sketch of the human eye class 12 physics CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Which one of the following is a true fish A Jellyfish class 12 biology CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Write the difference between solid liquid and gas class 12 chemistry CBSE
