
The integral $\int\dfrac{{dx}}{{{{\left( {x + 4} \right)}^{\left( {\dfrac{8}{7}} \right)}}{{\left( {x - 3} \right)}^{\left( {\dfrac{6}{7}} \right)}}}} $ is equal to? (c is a constant of integration)
A. $ \dfrac{{ - 1}}{{13}}{\left( {\dfrac{{x - 3}}{{x + 4}}} \right)^{ - 13/7}} + c $
B. $ \dfrac{1}{2}{\left( {\dfrac{{x - 3}}{{x + 4}}} \right)^{3/7}} + c $
C. $ - {\left( {\dfrac{{x - 3}}{{x + 4}}} \right)^{ - 1/7}} + c $
D. $ {\left( {\dfrac{{x - 3}}{{x + 4}}} \right)^{1/7}} + c $
Answer
550.5k+ views
Hint: As we can see in the denominator of $ \dfrac{1}{{{{\left( {x + 4} \right)}^{\left( {\dfrac{8}{7}} \right)}}{{\left( {x - 3} \right)}^{\left( {\dfrac{6}{7}} \right)}}}} $ , we have two terms which are multiplied to each other. So we have to write the power of 2nd term in terms of 1st term and consider 1st term as another variable, say t. Now find the derivative of t with respect to x, and put the obtained derivatives in the given integral. Use this info to further solve the question.
Complete step-by-step answer:
We are given to find the value of integral $\int\dfrac{{dx}}{{{{\left( {x + 4} \right)}^{\left( {\dfrac{8}{7}} \right)}}{{\left( {x - 3} \right)}^{\left( {\dfrac{6}{7}} \right)}}}} $
So first let us consider the denominator of $ \dfrac{1}{{{{\left( {x + 4} \right)}^{\left( {\dfrac{8}{7}} \right)}}{{\left( {x - 3} \right)}^{\left( {\dfrac{6}{7}} \right)}}}} $ , which is $ {\left( {x + 4} \right)^{\left( {\dfrac{8}{7}} \right)}}{\left( {x - 3} \right)^{\left( {\dfrac{6}{7}} \right)}} $
The second term of the denominator is $ {\left( {x - 3} \right)^{\left( {\dfrac{6}{7}} \right)}} $ , we have to write this term in terms of the power of 1st term.
This means $ {\left( {x - 3} \right)^{\left( {\dfrac{6}{7}} \right)}} $ should have a power $ \dfrac{8}{7} $ .
$ {\left( {x - 3} \right)^{\left( {\dfrac{6}{7}} \right)}} $ can also be written as $ {\left( {x - 3} \right)^{\left( {\dfrac{{14 - 8}}{7}} \right)}} = {\left( {x - 3} \right)^{2 - \left( {\dfrac{8}{7}} \right)}} = \dfrac{{{{\left( {x - 3} \right)}^2}}}{{{{\left( {x - 3} \right)}^{\left( {\dfrac{8}{7}} \right)}}}} $ , as $ {a^{m - n}} $ is also equal to $ \dfrac{{{a^m}}}{{{a^n}}} $
Replace the obtained value of 2nd term in the integral $\int\dfrac{{dx}}{{{{\left( {x + 4} \right)}^{\left( {\dfrac{8}{7}} \right)}}{{\left( {x - 3} \right)}^{\left( {\dfrac{6}{7}} \right)}}}} $
This gives us $\int\dfrac{{dx}}{{{{\left( {x + 4} \right)}^{\left( {\dfrac{8}{7}} \right)}}\left( {\dfrac{{{{\left( {x - 3} \right)}^2}}}{{{{\left( {x - 3} \right)}^{\left( {\dfrac{8}{7}} \right)}}}}} \right)}} $
$ \Rightarrow\int\dfrac{{dx}}{{\left( {\dfrac{{{{\left( {x + 4} \right)}^{\left( {\dfrac{8}{7}} \right)}}}}{{{{\left( {x - 3} \right)}^{\left( {\dfrac{8}{7}} \right)}}}}} \right)\left( {{{\left( {x - 3} \right)}^2}} \right)}} $
$ \Rightarrow\int\dfrac{{dx}}{{{{\left( {\dfrac{{x + 4}}{{x - 3}}} \right)}^{\left( {\dfrac{8}{7}} \right)}}\left( {{{\left( {x - 3} \right)}^2}} \right)}} $
Let us consider $ \dfrac{{x + 4}}{{x - 3}} $ as t.
$ \dfrac{{x + 4}}{{x - 3}} = t $
On differentiating t with respect to x, we get
$ \Rightarrow \dfrac{{dt}}{{dx}} = \dfrac{d}{{dx}}\left( {\dfrac{{x + 4}}{{x - 3}}} \right) = \dfrac{{\left( {x - 3} \right)\left( 1 \right) - \left( {x + 4} \right)\left( 1 \right)}}{{{{\left( {x - 3} \right)}^2}}} = \dfrac{{x - 3 - x - 4}}{{{{\left( {x - 3} \right)}^2}}} = \dfrac{{ - 7}}{{{{\left( {x - 3} \right)}^2}}} $
(as $ \dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) $ is equal to $ \dfrac{{v.\left( {\dfrac{{du}}{{dx}}} \right) - u.\left( {\dfrac{{dv}}{{dx}}} \right)}}{{{v^2}}} $ )
Here u is $ \left( {x + 4} \right) $ and v is $ \left( {x - 3} \right) $ ; $ \dfrac{{du}}{{dx}} = \dfrac{d}{{dx}}\left( {x + 4} \right) = 1 $ and $ \dfrac{{dv}}{{dx}} = \dfrac{d}{{dx}}\left( {x - 3} \right) = 1 $
$ \Rightarrow \dfrac{{dt}}{{dx}} = \dfrac{{ - 7}}{{{{\left( {x - 3} \right)}^2}}} $
$ \Rightarrow \dfrac{{dx}}{{{{\left( {x - 3} \right)}^2}}} = \dfrac{{dt}}{{ - 7}} $
On substituting the values of $ \dfrac{{x + 4}}{{x - 3}} $ as t and $ \dfrac{{dx}}{{{{\left( {x - 3} \right)}^2}}} $ as $ \dfrac{{dt}}{{ - 7}} $ in $\int\dfrac{{dx}}{{{{\left( {\dfrac{{x + 4}}{{x - 3}}} \right)}^{\left( {\dfrac{8}{7}} \right)}}\left( {{{\left( {x - 3} \right)}^2}} \right)}} $ , we get
$\int\dfrac{{dt}}{{ - 7 \times {t^{\left( {\dfrac{8}{7}} \right)}}}} $
$ \Rightarrow \dfrac{{ - 1}}{7}\smallint {t^{ - \left( {\dfrac{8}{7}} \right)}}dt $
$ \Rightarrow \dfrac{{ - 1}}{7}\left( {\dfrac{{{t^{\left( {\dfrac{{ - 8}}{7}} \right) + 1}}}}{{\left( {\dfrac{{ - 8}}{7}} \right) + 1}}} \right) + c $ , as the integration of $ {x^n} $ is $ \dfrac{{{x^{n + 1}}}}{{n + 1}} $
$ \Rightarrow \dfrac{{ - 1}}{7}\left( {\dfrac{{{t^{\left( {\dfrac{{ - 1}}{7}} \right)}}}}{{\left( {\dfrac{{ - 1}}{7}} \right)}}} \right) + c = \dfrac{{ - 1}}{7}\left( { - 7} \right)\left( {{t^{\left( {\dfrac{{ - 1}}{7}} \right)}}} \right) + c = {t^{\left( {\dfrac{{ - 1}}{7}} \right)}} + c $
On substituting $ \dfrac{{x + 4}}{{x - 3}} $ in the place of t, we get
$ \Rightarrow {\left( {\dfrac{{x + 4}}{{x - 3}}} \right)^{\left( {\dfrac{{ - 1}}{7}} \right)}} + c $
$ \therefore {\left( {\dfrac{{x - 3}}{{x + 4}}} \right)^{\left( {\dfrac{1}{7}} \right)}} + c $ , as $ {a^{ - m}} = \dfrac{1}{{{a^m}}} $
The integral $\int\dfrac{{dx}}{{{{\left( {x + 4} \right)}^{\left( {\dfrac{8}{7}} \right)}}{{\left( {x - 3} \right)}^{\left( {\dfrac{6}{7}} \right)}}}} $ is equal to $ {\left( {\dfrac{{x - 3}}{{x + 4}}} \right)^{\left( {\dfrac{1}{7}} \right)}} + c $
So, the correct answer is “Option D”.
Note: Do not differentiate when you are asked to integrate. Differentiation is an algebraic expression which is used to determine the change incurred from a point to another whereas Integration is used in calculating the area under the curve, which cannot be easily calculated. The differentiation of sine function is positive cosine, whereas the integration of sine function is negative cosine, as we can see the change is only in the signs. So be careful while integrating or differentiating. Differentiation is the inverse process of integration and vice-versa.
Complete step-by-step answer:
We are given to find the value of integral $\int\dfrac{{dx}}{{{{\left( {x + 4} \right)}^{\left( {\dfrac{8}{7}} \right)}}{{\left( {x - 3} \right)}^{\left( {\dfrac{6}{7}} \right)}}}} $
So first let us consider the denominator of $ \dfrac{1}{{{{\left( {x + 4} \right)}^{\left( {\dfrac{8}{7}} \right)}}{{\left( {x - 3} \right)}^{\left( {\dfrac{6}{7}} \right)}}}} $ , which is $ {\left( {x + 4} \right)^{\left( {\dfrac{8}{7}} \right)}}{\left( {x - 3} \right)^{\left( {\dfrac{6}{7}} \right)}} $
The second term of the denominator is $ {\left( {x - 3} \right)^{\left( {\dfrac{6}{7}} \right)}} $ , we have to write this term in terms of the power of 1st term.
This means $ {\left( {x - 3} \right)^{\left( {\dfrac{6}{7}} \right)}} $ should have a power $ \dfrac{8}{7} $ .
$ {\left( {x - 3} \right)^{\left( {\dfrac{6}{7}} \right)}} $ can also be written as $ {\left( {x - 3} \right)^{\left( {\dfrac{{14 - 8}}{7}} \right)}} = {\left( {x - 3} \right)^{2 - \left( {\dfrac{8}{7}} \right)}} = \dfrac{{{{\left( {x - 3} \right)}^2}}}{{{{\left( {x - 3} \right)}^{\left( {\dfrac{8}{7}} \right)}}}} $ , as $ {a^{m - n}} $ is also equal to $ \dfrac{{{a^m}}}{{{a^n}}} $
Replace the obtained value of 2nd term in the integral $\int\dfrac{{dx}}{{{{\left( {x + 4} \right)}^{\left( {\dfrac{8}{7}} \right)}}{{\left( {x - 3} \right)}^{\left( {\dfrac{6}{7}} \right)}}}} $
This gives us $\int\dfrac{{dx}}{{{{\left( {x + 4} \right)}^{\left( {\dfrac{8}{7}} \right)}}\left( {\dfrac{{{{\left( {x - 3} \right)}^2}}}{{{{\left( {x - 3} \right)}^{\left( {\dfrac{8}{7}} \right)}}}}} \right)}} $
$ \Rightarrow\int\dfrac{{dx}}{{\left( {\dfrac{{{{\left( {x + 4} \right)}^{\left( {\dfrac{8}{7}} \right)}}}}{{{{\left( {x - 3} \right)}^{\left( {\dfrac{8}{7}} \right)}}}}} \right)\left( {{{\left( {x - 3} \right)}^2}} \right)}} $
$ \Rightarrow\int\dfrac{{dx}}{{{{\left( {\dfrac{{x + 4}}{{x - 3}}} \right)}^{\left( {\dfrac{8}{7}} \right)}}\left( {{{\left( {x - 3} \right)}^2}} \right)}} $
Let us consider $ \dfrac{{x + 4}}{{x - 3}} $ as t.
$ \dfrac{{x + 4}}{{x - 3}} = t $
On differentiating t with respect to x, we get
$ \Rightarrow \dfrac{{dt}}{{dx}} = \dfrac{d}{{dx}}\left( {\dfrac{{x + 4}}{{x - 3}}} \right) = \dfrac{{\left( {x - 3} \right)\left( 1 \right) - \left( {x + 4} \right)\left( 1 \right)}}{{{{\left( {x - 3} \right)}^2}}} = \dfrac{{x - 3 - x - 4}}{{{{\left( {x - 3} \right)}^2}}} = \dfrac{{ - 7}}{{{{\left( {x - 3} \right)}^2}}} $
(as $ \dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) $ is equal to $ \dfrac{{v.\left( {\dfrac{{du}}{{dx}}} \right) - u.\left( {\dfrac{{dv}}{{dx}}} \right)}}{{{v^2}}} $ )
Here u is $ \left( {x + 4} \right) $ and v is $ \left( {x - 3} \right) $ ; $ \dfrac{{du}}{{dx}} = \dfrac{d}{{dx}}\left( {x + 4} \right) = 1 $ and $ \dfrac{{dv}}{{dx}} = \dfrac{d}{{dx}}\left( {x - 3} \right) = 1 $
$ \Rightarrow \dfrac{{dt}}{{dx}} = \dfrac{{ - 7}}{{{{\left( {x - 3} \right)}^2}}} $
$ \Rightarrow \dfrac{{dx}}{{{{\left( {x - 3} \right)}^2}}} = \dfrac{{dt}}{{ - 7}} $
On substituting the values of $ \dfrac{{x + 4}}{{x - 3}} $ as t and $ \dfrac{{dx}}{{{{\left( {x - 3} \right)}^2}}} $ as $ \dfrac{{dt}}{{ - 7}} $ in $\int\dfrac{{dx}}{{{{\left( {\dfrac{{x + 4}}{{x - 3}}} \right)}^{\left( {\dfrac{8}{7}} \right)}}\left( {{{\left( {x - 3} \right)}^2}} \right)}} $ , we get
$\int\dfrac{{dt}}{{ - 7 \times {t^{\left( {\dfrac{8}{7}} \right)}}}} $
$ \Rightarrow \dfrac{{ - 1}}{7}\smallint {t^{ - \left( {\dfrac{8}{7}} \right)}}dt $
$ \Rightarrow \dfrac{{ - 1}}{7}\left( {\dfrac{{{t^{\left( {\dfrac{{ - 8}}{7}} \right) + 1}}}}{{\left( {\dfrac{{ - 8}}{7}} \right) + 1}}} \right) + c $ , as the integration of $ {x^n} $ is $ \dfrac{{{x^{n + 1}}}}{{n + 1}} $
$ \Rightarrow \dfrac{{ - 1}}{7}\left( {\dfrac{{{t^{\left( {\dfrac{{ - 1}}{7}} \right)}}}}{{\left( {\dfrac{{ - 1}}{7}} \right)}}} \right) + c = \dfrac{{ - 1}}{7}\left( { - 7} \right)\left( {{t^{\left( {\dfrac{{ - 1}}{7}} \right)}}} \right) + c = {t^{\left( {\dfrac{{ - 1}}{7}} \right)}} + c $
On substituting $ \dfrac{{x + 4}}{{x - 3}} $ in the place of t, we get
$ \Rightarrow {\left( {\dfrac{{x + 4}}{{x - 3}}} \right)^{\left( {\dfrac{{ - 1}}{7}} \right)}} + c $
$ \therefore {\left( {\dfrac{{x - 3}}{{x + 4}}} \right)^{\left( {\dfrac{1}{7}} \right)}} + c $ , as $ {a^{ - m}} = \dfrac{1}{{{a^m}}} $
The integral $\int\dfrac{{dx}}{{{{\left( {x + 4} \right)}^{\left( {\dfrac{8}{7}} \right)}}{{\left( {x - 3} \right)}^{\left( {\dfrac{6}{7}} \right)}}}} $ is equal to $ {\left( {\dfrac{{x - 3}}{{x + 4}}} \right)^{\left( {\dfrac{1}{7}} \right)}} + c $
So, the correct answer is “Option D”.
Note: Do not differentiate when you are asked to integrate. Differentiation is an algebraic expression which is used to determine the change incurred from a point to another whereas Integration is used in calculating the area under the curve, which cannot be easily calculated. The differentiation of sine function is positive cosine, whereas the integration of sine function is negative cosine, as we can see the change is only in the signs. So be careful while integrating or differentiating. Differentiation is the inverse process of integration and vice-versa.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

