
The integral $\int {x{{\cos }^{ - 1}}\left( {\dfrac{{1 - {x^2}}}{{1 + {x^2}}}} \right)dx} $ is equal to
A) $ - x + \left( {1 + {x^2}} \right){\cot ^{ - 1}}x + c$
B) $ - x + \left( {1 + {x^2}} \right){\tan ^{ - 1}}x + c$
C) $ - x - \left( {1 + {x^2}} \right){\tan ^{ - 1}}x + c$
D) $ - x - \left( {1 + {x^2}} \right){\cot ^{ - 1}}x + c$
Answer
504k+ views
Hint:
In order to find the given integral we need to substitute $x = \tan \theta $,then differentiating it we get $dx = {\sec ^2}\theta d\theta $.and then by using identity $\dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }} = \cos 2\theta $ and ${\cos ^{ - 1}}\left( {\cos \theta } \right) = \theta $we get the integral $\int {2\theta \tan \theta s} e{c^2}\theta d\theta $and we need to integrate this by using $\int {uvdx = u\int {vdx} - \int {\left( {\dfrac{{du}}{{dx}}\int {vdx} } \right)} dx} $ ,where $u = 2\theta $ and $v = \tan \theta {\sec ^2}\theta $ and further simplification is done by using the identity ${\sec ^2}\theta - {\tan ^2}\theta = 1$and finally replacing by x we get the required answer.
Complete step by step solution:
We are asked to find the integral of $\int {x{{\cos }^{ - 1}}\left( {\dfrac{{1 - {x^2}}}{{1 + {x^2}}}} \right)dx} $
So lets start by using substitution method
Lets take $x = \tan \theta $
Then differentiating it we get $dx = {\sec ^2}\theta d\theta $
$ \Rightarrow \int {\tan \theta {{\cos }^{ - 1}}\left( {\dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}} \right)s} e{c^2}\theta d\theta $
Now we know the identity $\dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }} = \cos 2\theta $
Using this in the above equation we get
$ \Rightarrow \int {\tan \theta {{\cos }^{ - 1}}\left( {\cos 2\theta } \right)s} e{c^2}\theta d\theta $
And we know that ${\cos ^{ - 1}}\left( {\cos \theta } \right) = \theta $
Using this we get
$ \Rightarrow \int {2\theta \tan \theta s} e{c^2}\theta d\theta $
Now here we can do integration by parts
$\int {uvdx = u\int {vdx} - \int {\left( {\dfrac{{du}}{{dx}}\int {vdx} } \right)} dx} $
Here $u = 2\theta $ and $v = \tan \theta {\sec ^2}\theta $
Hence we get
\[
\Rightarrow \int {2\theta \tan \theta s} e{c^2}\theta d\theta = 2\theta \int {\tan \theta {{\sec }^2}\theta d\theta } - \int {\left( {\dfrac{{d(2\theta )}}{{d\theta }}\int {\tan \theta {{\sec }^2}\theta d\theta } } \right)} d\theta \\
\Rightarrow \int {2\theta \tan \theta s} e{c^2}\theta d\theta = 2\theta \int {\tan \theta {{\sec }^2}\theta d\theta } - \int {\left( {2\int {\tan \theta {{\sec }^2}\theta d\theta } } \right)} d\theta \\
\]
Now once again we need to use substitution method to solve the integrals
Lets take $t = \tan \theta $
Then differentiating it we get $dt = {\sec ^2}\theta d\theta $
\[
\Rightarrow \int {2\theta \tan \theta s} e{c^2}\theta d\theta = 2\theta \int {\operatorname{t} dt} - \int {\left( {2\int {tdt} } \right)} \dfrac{{dt}}{{{{\sec }^2}\theta }} \\
\Rightarrow \int {2\theta \tan \theta s} e{c^2}\theta d\theta = 2\theta \dfrac{{{t^2}}}{2} - \int {\left( {2\dfrac{{{t^2}}}{2}} \right)} \dfrac{{dt}}{{{{\sec }^2}\theta }} \\
\Rightarrow \int {2\theta \tan \theta s} e{c^2}\theta d\theta = \theta {t^2} - \int {\left( {{t^2}} \right)} \dfrac{{dt}}{{{{\sec }^2}\theta }} \\
\]
Now replacing t by $\tan \theta $
\[ \Rightarrow \int {2\theta \tan \theta s} e{c^2}\theta d\theta = \theta {\tan ^2}\theta - \int {\left( {{{\tan }^2}\theta } \right)} d\theta \]
We know that by using the identity ${\sec ^2}\theta - {\tan ^2}\theta = 1$
We can write it as ${\sec ^2}\theta - 1 = {\tan ^2}\theta $
Using this we get
\[
\Rightarrow \int {2\theta \tan \theta s} e{c^2}\theta d\theta = \theta {\tan ^2}\theta - \int {\left( {{{\sec }^2}\theta - 1} \right)} d\theta \\
\Rightarrow \int {2\theta \tan \theta s} e{c^2}\theta d\theta = \theta {\tan ^2}\theta - \left[ {\int {{{\sec }^2}\theta } d\theta - \int {d\theta } } \right] \\
\Rightarrow \int {2\theta \tan \theta s} e{c^2}\theta d\theta = \theta {\tan ^2}\theta - \left[ {\tan \theta - \theta } \right] \\
\Rightarrow \int {2\theta \tan \theta s} e{c^2}\theta d\theta = \theta {\tan ^2}\theta - \tan \theta + \theta \\
\Rightarrow \int {2\theta \tan \theta s} e{c^2}\theta d\theta = \theta \left[ {1 + {{\tan }^2}\theta } \right] - \tan \theta \\
\]
Now replacing $\theta $ by x we get
\[ \Rightarrow \int {2\theta \tan \theta s} e{c^2}\theta d\theta = {\tan ^{ - 1}}x\left[ {1 + {x^2}} \right] - x\]
Hence we get
$ \Rightarrow \int {x{{\cos }^{ - 1}}\left( {\dfrac{{1 - {x^2}}}{{1 + {x^2}}}} \right)dx} = - x + \left( {1 + {x^2}} \right){\tan ^{ - 1}}x + c$
Therefore the correct option is B.
Note:
Steps to keep in mind while solving trigonometric problems are
1) Always start from the more complex side
2) Express everything into sine and cosine
3) Combine terms into a single fraction
4) Use Pythagorean identities to transform between ${\sin ^2}x{\text{ and }}{\cos ^2}x$
5) Know when to apply double angle formula
6) Know when to apply addition formula
7) Good old expand/ factorize/ simplify/ cancelling
8) Integration, in mathematics, technique of finding a function g(x) the derivative of which, Dg(x), is equal to a given function f(x). This is indicated by the integral sign $\int {} $ as in $\int {f(x)} $ , usually called the indefinite integral of the function.
In order to find the given integral we need to substitute $x = \tan \theta $,then differentiating it we get $dx = {\sec ^2}\theta d\theta $.and then by using identity $\dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }} = \cos 2\theta $ and ${\cos ^{ - 1}}\left( {\cos \theta } \right) = \theta $we get the integral $\int {2\theta \tan \theta s} e{c^2}\theta d\theta $and we need to integrate this by using $\int {uvdx = u\int {vdx} - \int {\left( {\dfrac{{du}}{{dx}}\int {vdx} } \right)} dx} $ ,where $u = 2\theta $ and $v = \tan \theta {\sec ^2}\theta $ and further simplification is done by using the identity ${\sec ^2}\theta - {\tan ^2}\theta = 1$and finally replacing by x we get the required answer.
Complete step by step solution:
We are asked to find the integral of $\int {x{{\cos }^{ - 1}}\left( {\dfrac{{1 - {x^2}}}{{1 + {x^2}}}} \right)dx} $
So lets start by using substitution method
Lets take $x = \tan \theta $
Then differentiating it we get $dx = {\sec ^2}\theta d\theta $
$ \Rightarrow \int {\tan \theta {{\cos }^{ - 1}}\left( {\dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}} \right)s} e{c^2}\theta d\theta $
Now we know the identity $\dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }} = \cos 2\theta $
Using this in the above equation we get
$ \Rightarrow \int {\tan \theta {{\cos }^{ - 1}}\left( {\cos 2\theta } \right)s} e{c^2}\theta d\theta $
And we know that ${\cos ^{ - 1}}\left( {\cos \theta } \right) = \theta $
Using this we get
$ \Rightarrow \int {2\theta \tan \theta s} e{c^2}\theta d\theta $
Now here we can do integration by parts
$\int {uvdx = u\int {vdx} - \int {\left( {\dfrac{{du}}{{dx}}\int {vdx} } \right)} dx} $
Here $u = 2\theta $ and $v = \tan \theta {\sec ^2}\theta $
Hence we get
\[
\Rightarrow \int {2\theta \tan \theta s} e{c^2}\theta d\theta = 2\theta \int {\tan \theta {{\sec }^2}\theta d\theta } - \int {\left( {\dfrac{{d(2\theta )}}{{d\theta }}\int {\tan \theta {{\sec }^2}\theta d\theta } } \right)} d\theta \\
\Rightarrow \int {2\theta \tan \theta s} e{c^2}\theta d\theta = 2\theta \int {\tan \theta {{\sec }^2}\theta d\theta } - \int {\left( {2\int {\tan \theta {{\sec }^2}\theta d\theta } } \right)} d\theta \\
\]
Now once again we need to use substitution method to solve the integrals
Lets take $t = \tan \theta $
Then differentiating it we get $dt = {\sec ^2}\theta d\theta $
\[
\Rightarrow \int {2\theta \tan \theta s} e{c^2}\theta d\theta = 2\theta \int {\operatorname{t} dt} - \int {\left( {2\int {tdt} } \right)} \dfrac{{dt}}{{{{\sec }^2}\theta }} \\
\Rightarrow \int {2\theta \tan \theta s} e{c^2}\theta d\theta = 2\theta \dfrac{{{t^2}}}{2} - \int {\left( {2\dfrac{{{t^2}}}{2}} \right)} \dfrac{{dt}}{{{{\sec }^2}\theta }} \\
\Rightarrow \int {2\theta \tan \theta s} e{c^2}\theta d\theta = \theta {t^2} - \int {\left( {{t^2}} \right)} \dfrac{{dt}}{{{{\sec }^2}\theta }} \\
\]
Now replacing t by $\tan \theta $
\[ \Rightarrow \int {2\theta \tan \theta s} e{c^2}\theta d\theta = \theta {\tan ^2}\theta - \int {\left( {{{\tan }^2}\theta } \right)} d\theta \]
We know that by using the identity ${\sec ^2}\theta - {\tan ^2}\theta = 1$
We can write it as ${\sec ^2}\theta - 1 = {\tan ^2}\theta $
Using this we get
\[
\Rightarrow \int {2\theta \tan \theta s} e{c^2}\theta d\theta = \theta {\tan ^2}\theta - \int {\left( {{{\sec }^2}\theta - 1} \right)} d\theta \\
\Rightarrow \int {2\theta \tan \theta s} e{c^2}\theta d\theta = \theta {\tan ^2}\theta - \left[ {\int {{{\sec }^2}\theta } d\theta - \int {d\theta } } \right] \\
\Rightarrow \int {2\theta \tan \theta s} e{c^2}\theta d\theta = \theta {\tan ^2}\theta - \left[ {\tan \theta - \theta } \right] \\
\Rightarrow \int {2\theta \tan \theta s} e{c^2}\theta d\theta = \theta {\tan ^2}\theta - \tan \theta + \theta \\
\Rightarrow \int {2\theta \tan \theta s} e{c^2}\theta d\theta = \theta \left[ {1 + {{\tan }^2}\theta } \right] - \tan \theta \\
\]
Now replacing $\theta $ by x we get
\[ \Rightarrow \int {2\theta \tan \theta s} e{c^2}\theta d\theta = {\tan ^{ - 1}}x\left[ {1 + {x^2}} \right] - x\]
Hence we get
$ \Rightarrow \int {x{{\cos }^{ - 1}}\left( {\dfrac{{1 - {x^2}}}{{1 + {x^2}}}} \right)dx} = - x + \left( {1 + {x^2}} \right){\tan ^{ - 1}}x + c$
Therefore the correct option is B.
Note:
Steps to keep in mind while solving trigonometric problems are
1) Always start from the more complex side
2) Express everything into sine and cosine
3) Combine terms into a single fraction
4) Use Pythagorean identities to transform between ${\sin ^2}x{\text{ and }}{\cos ^2}x$
5) Know when to apply double angle formula
6) Know when to apply addition formula
7) Good old expand/ factorize/ simplify/ cancelling
8) Integration, in mathematics, technique of finding a function g(x) the derivative of which, Dg(x), is equal to a given function f(x). This is indicated by the integral sign $\int {} $ as in $\int {f(x)} $ , usually called the indefinite integral of the function.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Pomato is a Somatic hybrid b Allopolyploid c Natural class 12 biology CBSE
