
The integer n for which $\mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {\cos x - 1} \right)\left( {\cos x - {e^x}} \right)}}{{{x^n}}}$ is a finite nonzero number is?
A. 3
B. 6
C. 9
D. 12
Answer
543.3k+ views
Hint: First we are required to find $\mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {\cos x - 1} \right)\left( {\cos x - {e^x}} \right)}}{{{x^n}}}$. Note that, $\cos \theta = 1 - 2{\sin ^2}\dfrac{\theta }{2}$. Therefore, write $\left( {\cos x - 1} \right)$ as $ - 2{\sin ^2}\left( {\dfrac{x}{2}} \right)$. Again, we know that $\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\sin x}}{x}} \right) = 1$. Hence, substitute $\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\cos x - 1}}{{{x^2}}}} \right) \times \left( {\dfrac{{\cos x - {e^x}}}{{{x^{n - 2}}}}} \right)$ with $ - \dfrac{1}{2} \times \mathop {\lim }\limits_{x \to 0} {\left( {\dfrac{{\sin \dfrac{x}{2}}}{{\dfrac{x}{2}}}} \right)^2} \times \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\cos x - {e^x}}}{{{x^{n - 2}}}}} \right)$ and proceed.
Formula used: $\cos \theta = 1 - 2{\sin ^2}\dfrac{\theta }{2}$
$\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\sin x}}{x}} \right) = 1$
Complete step-by-step solution:
First we are required to find $\mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {\cos x - 1} \right)\left( {\cos x - {e^x}} \right)}}{{{x^n}}}$.
$\mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {\cos x - 1} \right)\left( {\cos x - {e^x}} \right)}}{{{x^n}}}$
$ = \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\cos x - 1}}{{{x^2}}}} \right) \times \left( {\dfrac{{\cos x - {e^x}}}{{{x^{n - 2}}}}} \right)$
Since $\cos \theta = 1 - 2{\sin ^2}\dfrac{\theta }{2}$ ,
$ = \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{ - 2{{\sin }^2}\left( {\dfrac{x}{2}} \right)}}{{4 \times {{\left( {\dfrac{x}{2}} \right)}^2}}}} \right) \times \left( {\dfrac{{\cos x - {e^x}}}{{{x^{n - 2}}}}} \right)$
$ = - \dfrac{1}{2} \times \mathop {\lim }\limits_{x \to 0} {\left( {\dfrac{{\sin \dfrac{x}{2}}}{{\dfrac{x}{2}}}} \right)^2} \times \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\cos x - {e^x}}}{{{x^{n - 2}}}}} \right)$ …….(1)
Again we know that, $\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\sin x}}{x}} \right) = 1$,
Therefore, $\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\sin \dfrac{x}{2}}}{{\dfrac{x}{2}}}} \right)$=1,
Substituting the value in (1), we get,
$ = - \dfrac{1}{2} \times \mathop {\lim }\limits_{x \to 0} {\left( {\dfrac{{\sin \dfrac{x}{2}}}{{\dfrac{x}{2}}}} \right)^2} \times \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\cos x - {e^x}}}{{{x^{n - 2}}}}} \right)$
$ = - \dfrac{1}{2} \times 1 \times \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\cos x - {e^x}}}{{{x^{n - 2}}}}} \right)$
$ = - \dfrac{1}{2} \times \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\cos x - {e^x}}}{{{x^{n - 2}}}}} \right)$
Now, $\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\cos x - {e^x}}}{{{x^{n - 2}}}}} \right)$is in $\dfrac{0}{0}$ form. Therefore, we can use L’ Hospital Rule and differentiate both the numerator and denominator with respect to x.
So, we can write $\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\cos x - {e^x}}}{{{x^{n - 2}}}}} \right)$ as $\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{ - \sin x - {e^x}}}{{(n - 2){x^{n - 3}}}}} \right)$ with the help of L’ Hospital Rule.
Therefore, $ - \dfrac{1}{2} \times \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\cos x - {e^x}}}{{{x^{n - 2}}}}} \right)$
$ = - \dfrac{1}{2} \times \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{ - \sin x - {e^x}}}{{(n - 2){x^{n - 3}}}}} \right)$
$ = - \dfrac{1}{{2(n - 2)}} \times \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{ - \sin x - {e^x}}}{{{x^{n - 3}}}}} \right)$
Substituting x=0 in the numerator, we get
$ = - \dfrac{1}{{2(n - 2)}} \times - 1 \times \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{1}{{{x^{n - 3}}}}} \right)$
$ = \dfrac{1}{{2(n - 2)}}\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{1}{{{x^{n - 3}}}}} \right)$
Now, according to the question, the limit will have finite non zero value if
${x^{n - 3}} = 1$
$ \Rightarrow {x^{n - 3}} = {x^0}$
$ \Rightarrow n - 3 = 0$
$ \Rightarrow n = 3$
Hence, the integer n for which $\mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {\cos x - 1} \right)\left( {\cos x - {e^x}} \right)}}{{{x^n}}}$ is a finite nonzero number, is 3.
Therefore, the correct answer is option (A).
Note: Note the few important formulae of limits:
$\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\sin x}}{x}} \right) = 1$
$\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\tan x}}{x}} \right) = 1$
$\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{{e^x} - 1}}{x}} \right) = 1$
$\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{{a^x} - 1}}{x}} \right) = {\log _e}a$
$\mathop {\lim }\limits_{x \to 0} \dfrac{{\log (1 + x)}}{x} = 1$
$\mathop {\lim }\limits_{x \to 0} {\left( {1 + x} \right)^{\dfrac{1}{x}}} = e$
$\mathop {\lim }\limits_{x \to \infty } {\left( {1 + \dfrac{1}{x}} \right)^x} = e$
$\mathop {\lim }\limits_{x \to \infty } {\left( {1 + \dfrac{a}{x}} \right)^x} = {e^a}$
Formula used: $\cos \theta = 1 - 2{\sin ^2}\dfrac{\theta }{2}$
$\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\sin x}}{x}} \right) = 1$
Complete step-by-step solution:
First we are required to find $\mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {\cos x - 1} \right)\left( {\cos x - {e^x}} \right)}}{{{x^n}}}$.
$\mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {\cos x - 1} \right)\left( {\cos x - {e^x}} \right)}}{{{x^n}}}$
$ = \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\cos x - 1}}{{{x^2}}}} \right) \times \left( {\dfrac{{\cos x - {e^x}}}{{{x^{n - 2}}}}} \right)$
Since $\cos \theta = 1 - 2{\sin ^2}\dfrac{\theta }{2}$ ,
$ = \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{ - 2{{\sin }^2}\left( {\dfrac{x}{2}} \right)}}{{4 \times {{\left( {\dfrac{x}{2}} \right)}^2}}}} \right) \times \left( {\dfrac{{\cos x - {e^x}}}{{{x^{n - 2}}}}} \right)$
$ = - \dfrac{1}{2} \times \mathop {\lim }\limits_{x \to 0} {\left( {\dfrac{{\sin \dfrac{x}{2}}}{{\dfrac{x}{2}}}} \right)^2} \times \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\cos x - {e^x}}}{{{x^{n - 2}}}}} \right)$ …….(1)
Again we know that, $\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\sin x}}{x}} \right) = 1$,
Therefore, $\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\sin \dfrac{x}{2}}}{{\dfrac{x}{2}}}} \right)$=1,
Substituting the value in (1), we get,
$ = - \dfrac{1}{2} \times \mathop {\lim }\limits_{x \to 0} {\left( {\dfrac{{\sin \dfrac{x}{2}}}{{\dfrac{x}{2}}}} \right)^2} \times \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\cos x - {e^x}}}{{{x^{n - 2}}}}} \right)$
$ = - \dfrac{1}{2} \times 1 \times \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\cos x - {e^x}}}{{{x^{n - 2}}}}} \right)$
$ = - \dfrac{1}{2} \times \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\cos x - {e^x}}}{{{x^{n - 2}}}}} \right)$
Now, $\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\cos x - {e^x}}}{{{x^{n - 2}}}}} \right)$is in $\dfrac{0}{0}$ form. Therefore, we can use L’ Hospital Rule and differentiate both the numerator and denominator with respect to x.
So, we can write $\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\cos x - {e^x}}}{{{x^{n - 2}}}}} \right)$ as $\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{ - \sin x - {e^x}}}{{(n - 2){x^{n - 3}}}}} \right)$ with the help of L’ Hospital Rule.
Therefore, $ - \dfrac{1}{2} \times \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\cos x - {e^x}}}{{{x^{n - 2}}}}} \right)$
$ = - \dfrac{1}{2} \times \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{ - \sin x - {e^x}}}{{(n - 2){x^{n - 3}}}}} \right)$
$ = - \dfrac{1}{{2(n - 2)}} \times \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{ - \sin x - {e^x}}}{{{x^{n - 3}}}}} \right)$
Substituting x=0 in the numerator, we get
$ = - \dfrac{1}{{2(n - 2)}} \times - 1 \times \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{1}{{{x^{n - 3}}}}} \right)$
$ = \dfrac{1}{{2(n - 2)}}\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{1}{{{x^{n - 3}}}}} \right)$
Now, according to the question, the limit will have finite non zero value if
${x^{n - 3}} = 1$
$ \Rightarrow {x^{n - 3}} = {x^0}$
$ \Rightarrow n - 3 = 0$
$ \Rightarrow n = 3$
Hence, the integer n for which $\mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {\cos x - 1} \right)\left( {\cos x - {e^x}} \right)}}{{{x^n}}}$ is a finite nonzero number, is 3.
Therefore, the correct answer is option (A).
Note: Note the few important formulae of limits:
$\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\sin x}}{x}} \right) = 1$
$\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\tan x}}{x}} \right) = 1$
$\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{{e^x} - 1}}{x}} \right) = 1$
$\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{{a^x} - 1}}{x}} \right) = {\log _e}a$
$\mathop {\lim }\limits_{x \to 0} \dfrac{{\log (1 + x)}}{x} = 1$
$\mathop {\lim }\limits_{x \to 0} {\left( {1 + x} \right)^{\dfrac{1}{x}}} = e$
$\mathop {\lim }\limits_{x \to \infty } {\left( {1 + \dfrac{1}{x}} \right)^x} = e$
$\mathop {\lim }\limits_{x \to \infty } {\left( {1 + \dfrac{a}{x}} \right)^x} = {e^a}$
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

