
The $\int{\dfrac{1}{x+{{x}^{5}}}dx}=f\left( x \right)+c$, then the value of $\int{\dfrac{{{x}^{4}}}{x+{{x}^{5}}}dx}$ is
A. $\log x-f\left( x \right)+c$
B. $f\left( x \right)+\log x+c$
C. $f\left( x \right)-\log x+c$
D. None of these
Answer
499.8k+ views
Hint: We first explain the terms $\dfrac{dy}{dx}$ where $y=f\left( x \right)$.We break the given expression and then need to integrate the equation once to find all the solutions of the integration. We take one arbitrary constant term for the integration.
Complete step by step answer:
We need to find the integral of $\int{\dfrac{{{x}^{4}}}{x+{{x}^{5}}}dx}$. We have
$\dfrac{{{x}^{4}}}{x+{{x}^{5}}} =\dfrac{1+{{x}^{4}}-1}{x\left( 1+{{x}^{4}} \right)} \\
\Rightarrow \dfrac{{{x}^{4}}}{x+{{x}^{5}}}=\dfrac{1+{{x}^{4}}}{x\left( 1+{{x}^{4}} \right)}-\dfrac{1}{x+{{x}^{5}}} \\
\Rightarrow \dfrac{{{x}^{4}}}{x+{{x}^{5}}}=\dfrac{1}{x}-\dfrac{1}{x+{{x}^{5}}} \\ $
We can form $\int{\dfrac{{{x}^{4}}}{x+{{x}^{5}}}dx}$ as
\[\int{\left( \dfrac{1}{x}-\dfrac{1}{x+{{x}^{5}}} \right)dx}=\int{\dfrac{dx}{x}}-\int{\dfrac{dx}{x+{{x}^{5}}}}\]
Now we use the integral theorem of \[\int{\dfrac{dx}{x}}=\log \left| x \right|+c\]. Given $\int{\dfrac{1}{x+{{x}^{5}}}dx}=f\left( x \right)+c$.
\[\int{\dfrac{{{x}^{4}}}{x+{{x}^{5}}}dx} =\int{\dfrac{dx}{x}}-\int{\dfrac{dx}{x+{{x}^{5}}}} \\
\therefore \int{\dfrac{{{x}^{4}}}{x+{{x}^{5}}}dx}=\log \left| x \right|-f\left( x \right)+c \]
Hence, the correct option is A.
Note: The breaking of the function is necessary for the integration as chain rule can not be applied separately. If the particular value for the variable $x$ is not available then we have to use the modulus form for the integration.
Complete step by step answer:
We need to find the integral of $\int{\dfrac{{{x}^{4}}}{x+{{x}^{5}}}dx}$. We have
$\dfrac{{{x}^{4}}}{x+{{x}^{5}}} =\dfrac{1+{{x}^{4}}-1}{x\left( 1+{{x}^{4}} \right)} \\
\Rightarrow \dfrac{{{x}^{4}}}{x+{{x}^{5}}}=\dfrac{1+{{x}^{4}}}{x\left( 1+{{x}^{4}} \right)}-\dfrac{1}{x+{{x}^{5}}} \\
\Rightarrow \dfrac{{{x}^{4}}}{x+{{x}^{5}}}=\dfrac{1}{x}-\dfrac{1}{x+{{x}^{5}}} \\ $
We can form $\int{\dfrac{{{x}^{4}}}{x+{{x}^{5}}}dx}$ as
\[\int{\left( \dfrac{1}{x}-\dfrac{1}{x+{{x}^{5}}} \right)dx}=\int{\dfrac{dx}{x}}-\int{\dfrac{dx}{x+{{x}^{5}}}}\]
Now we use the integral theorem of \[\int{\dfrac{dx}{x}}=\log \left| x \right|+c\]. Given $\int{\dfrac{1}{x+{{x}^{5}}}dx}=f\left( x \right)+c$.
\[\int{\dfrac{{{x}^{4}}}{x+{{x}^{5}}}dx} =\int{\dfrac{dx}{x}}-\int{\dfrac{dx}{x+{{x}^{5}}}} \\
\therefore \int{\dfrac{{{x}^{4}}}{x+{{x}^{5}}}dx}=\log \left| x \right|-f\left( x \right)+c \]
Hence, the correct option is A.
Note: The breaking of the function is necessary for the integration as chain rule can not be applied separately. If the particular value for the variable $x$ is not available then we have to use the modulus form for the integration.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

