
The initial velocity of a particle, $\overrightarrow u = 3\overrightarrow i + 4\overrightarrow j $ . It is moving with uniform acceleration, $\overrightarrow a = 0.4\overrightarrow i + 0.3\overrightarrow j $.Its velocity after 10 seconds is?
Answer
577.5k+ views
Hint
We will use the first equation of motion to determine the final velocity. It is given by: -
$\overrightarrow v = \overrightarrow u + \overrightarrow a \,\Delta t$
where, $\overrightarrow v = $ final velocity of the body
$\overrightarrow u = $ initiate velocity of the body
$\overrightarrow a = $ acceleration of the body
$\Delta t = $ change in time.
Complete step by step answer
We will apply the first equation of motion to calculate the final velocity. It is expressed as below: -
$\overrightarrow v = \overrightarrow u + \overrightarrow {a\,} \Delta t$
where, $\overrightarrow v = $ final velocity of the body
$\overrightarrow u = $ initiate velocity of the body
$\overrightarrow a = $ acceleration of the body
$\Delta t = $ change in time
Now, according to question,
Initial velocity $(\overrightarrow u ) = 3\overrightarrow i + 4\overrightarrow j $)
Change in time $(\Delta t) = 10$ seconds
Acceleration $(\overrightarrow a ) = 0.4\overrightarrow i + 0.3\overrightarrow j $
Final velocity $(\overrightarrow v ) = $ to be calculated.
We will now plug these values into the formula:
$\overrightarrow v = (3\overrightarrow i + 4\overrightarrow j ) + (0.4\overrightarrow i + 0.3\overrightarrow j ) \times 10$
$\overrightarrow v = (3\overrightarrow i + 4\overrightarrow j ) + (4\overrightarrow i + 3\overrightarrow j )$
$\overrightarrow v = (3 + 4)\overrightarrow i + (4 + 3)\overrightarrow j $
$ \Rightarrow \overrightarrow v = 7\overrightarrow i + 7\overrightarrow j $
Hence, the velocity after 10 seconds is $7{\text{ }}\overrightarrow i + 7\overrightarrow j $ .
Note
In this question we have used the vector form of the second equation of motion because the initial velocity and acceleration are also given in the vector form.
But we can express the final velocity in an easier to interpret way as well by finding out its magnitude and direction. Following formulas can be used to do this: -
For a vector $R = x\overrightarrow i + y\overrightarrow j $ ,
Magnitude $ = |R| = \sqrt {{x^2} + {y^2}} $
Angle from horizontal (direction) $ = \theta = {\operatorname{\tan} ^{ - 1}}\left( {\dfrac{y}{x}} \right)$
So now,
$
|v| = \sqrt {{7^2} + {7^2}} \\
|v| = 7\sqrt 2 \\
\Rightarrow |v| = 9.89\dfrac{m}{s} \\
$
$
\theta = {\operatorname{\tan} ^{ - 1}}\left( {\dfrac{7}{7}} \right) \\
\theta = {\operatorname{\tan} ^{ - 1}}(1) \\
\Rightarrow \theta = {45^\circ } \\
$
Thus, final velocity (v) has a magnitude of 9.89m/s and acts at an angle of 45 degrees from the horizontal.
This can be asked in subparts of a question like this.
We will use the first equation of motion to determine the final velocity. It is given by: -
$\overrightarrow v = \overrightarrow u + \overrightarrow a \,\Delta t$
where, $\overrightarrow v = $ final velocity of the body
$\overrightarrow u = $ initiate velocity of the body
$\overrightarrow a = $ acceleration of the body
$\Delta t = $ change in time.
Complete step by step answer
We will apply the first equation of motion to calculate the final velocity. It is expressed as below: -
$\overrightarrow v = \overrightarrow u + \overrightarrow {a\,} \Delta t$
where, $\overrightarrow v = $ final velocity of the body
$\overrightarrow u = $ initiate velocity of the body
$\overrightarrow a = $ acceleration of the body
$\Delta t = $ change in time
Now, according to question,
Initial velocity $(\overrightarrow u ) = 3\overrightarrow i + 4\overrightarrow j $)
Change in time $(\Delta t) = 10$ seconds
Acceleration $(\overrightarrow a ) = 0.4\overrightarrow i + 0.3\overrightarrow j $
Final velocity $(\overrightarrow v ) = $ to be calculated.
We will now plug these values into the formula:
$\overrightarrow v = (3\overrightarrow i + 4\overrightarrow j ) + (0.4\overrightarrow i + 0.3\overrightarrow j ) \times 10$
$\overrightarrow v = (3\overrightarrow i + 4\overrightarrow j ) + (4\overrightarrow i + 3\overrightarrow j )$
$\overrightarrow v = (3 + 4)\overrightarrow i + (4 + 3)\overrightarrow j $
$ \Rightarrow \overrightarrow v = 7\overrightarrow i + 7\overrightarrow j $
Hence, the velocity after 10 seconds is $7{\text{ }}\overrightarrow i + 7\overrightarrow j $ .
Note
In this question we have used the vector form of the second equation of motion because the initial velocity and acceleration are also given in the vector form.
But we can express the final velocity in an easier to interpret way as well by finding out its magnitude and direction. Following formulas can be used to do this: -
For a vector $R = x\overrightarrow i + y\overrightarrow j $ ,
Magnitude $ = |R| = \sqrt {{x^2} + {y^2}} $
Angle from horizontal (direction) $ = \theta = {\operatorname{\tan} ^{ - 1}}\left( {\dfrac{y}{x}} \right)$
So now,
$
|v| = \sqrt {{7^2} + {7^2}} \\
|v| = 7\sqrt 2 \\
\Rightarrow |v| = 9.89\dfrac{m}{s} \\
$
$
\theta = {\operatorname{\tan} ^{ - 1}}\left( {\dfrac{7}{7}} \right) \\
\theta = {\operatorname{\tan} ^{ - 1}}(1) \\
\Rightarrow \theta = {45^\circ } \\
$
Thus, final velocity (v) has a magnitude of 9.89m/s and acts at an angle of 45 degrees from the horizontal.
This can be asked in subparts of a question like this.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

