
The image of the interval [-1, 3] under the mapping \[f\left( x \right) = 4x{^3} - 12x\] is
A) [-2, 0]
B) [-8, 72]
C) [-8, 0]
D) [-8, -2]
Answer
572.7k+ views
Hint: The equation of the curve and the interval of these curves is also given. We can substitute the values lying between the given intervals in the function and see the minimum and maximum values obtained. These value intervals will provide us the required image interval.
Complete step by step solution:
The given equation of the curve is \[f\left( x \right) = 4x{^3} - 12x\] and its interval is [-1, 3].
The image of this interval under the mapping of the given curve will be given by the minimum and maximum value of this function when x belongs to this interval.
We have 5 values of x lying between the intervals that are: -1, 0, 1, 2, 3. Substituting these values of variable in the given function, we get:
When x = -1:
\[
f\left( { - 1} \right) = 4\left( { - 1} \right){^3} - 12\left( { - 1} \right) \\
\Rightarrow f\left( { - 1} \right) = - 4 + 12 \\
\Rightarrow f\left( { - 1} \right) = 8 \;
\]
When x = 0:
\[
f\left( 0 \right) = 4\left( 0 \right){^3} - 12\left( 0 \right) \\
\Rightarrow f\left( 0 \right) = 0 - 0 \\
\Rightarrow f\left( 0 \right) = 0 \;
\]
When x = 1:
\[
f\left( 1 \right) = 4\left( 1 \right){^3} - 12\left( 1 \right) \\
\Rightarrow f\left( 1 \right) = 4 - 12 \\
\Rightarrow f\left( 1 \right) = - 8 \;
\]
When x = 2:
\[
f\left( 2 \right) = 4\left( 2 \right){^3} - 12\left( 2 \right) \\
\Rightarrow f\left( 2 \right) = 32 - 24 \\
\Rightarrow f\left( 2 \right) = 8 \;
\]
When x = 3:
\[
f\left( 3 \right) = 4\left( 3 \right){^3} - 12\left( 3 \right) \\
\Rightarrow f\left( 3 \right) = 108 - 36 \\
\Rightarrow f\left( 3 \right) = 72 \;
\]
We can see that the minimum and maximum values of the function in this interval is -8 and 72 respectively.
So, the image of the interval for the given curve is [-8, 72]
So, the correct answer is “Option B”.
Note: We can also find the required image by the derivative method.
The given curve is \[f\left( x \right) = 4x{^3} - 12x\]
The derivative of this function is given as:
\[
f'\left( x \right) = 12x{^2} - 12x \\
\left( {\because f'{{\left( x \right)}^n}} \right) = n{x^{n - 1}} \\
\Rightarrow f'\left( x \right) = 12\left( {x{^2} - 1} \right) \\
\]
When we equate this equal to 0, we get the value as:
$
f'(x) = 0 \\
\Rightarrow 12\left( {{x^2} - 1} \right) = 0 \\
\Rightarrow {x^2} - 1 = 0 \\
\Rightarrow {x^2} = 1 \\
\Rightarrow x = \pm 1 \;
$
The minimum value will be given by $ x > 0 $ i.e. when x = 1.
$
\Rightarrow f\left( 1 \right) = 4{\left( 1 \right)^3} - 12\left( 1 \right) \\
\Rightarrow f\left( 1 \right) = - 8 \;
$
Now, the interval extremes are -1 and 3 and either of them can give the maximum value, so we can try for both.
\[
f\left( { - 1} \right) = 4\left( { - 1} \right){^3} - 12\left( { - 1} \right) \\
\Rightarrow f\left( { - 1} \right) = 8 \;
\]
\[
f\left( 3 \right) = 4\left( 3 \right){^3} - 12\left( 3 \right) \\
\Rightarrow f\left( 3 \right) = 72 \;
\]
So, the maximum value is 8.
Therefore, the image will be at [-8, 72]
Complete step by step solution:
The given equation of the curve is \[f\left( x \right) = 4x{^3} - 12x\] and its interval is [-1, 3].
The image of this interval under the mapping of the given curve will be given by the minimum and maximum value of this function when x belongs to this interval.
We have 5 values of x lying between the intervals that are: -1, 0, 1, 2, 3. Substituting these values of variable in the given function, we get:
When x = -1:
\[
f\left( { - 1} \right) = 4\left( { - 1} \right){^3} - 12\left( { - 1} \right) \\
\Rightarrow f\left( { - 1} \right) = - 4 + 12 \\
\Rightarrow f\left( { - 1} \right) = 8 \;
\]
When x = 0:
\[
f\left( 0 \right) = 4\left( 0 \right){^3} - 12\left( 0 \right) \\
\Rightarrow f\left( 0 \right) = 0 - 0 \\
\Rightarrow f\left( 0 \right) = 0 \;
\]
When x = 1:
\[
f\left( 1 \right) = 4\left( 1 \right){^3} - 12\left( 1 \right) \\
\Rightarrow f\left( 1 \right) = 4 - 12 \\
\Rightarrow f\left( 1 \right) = - 8 \;
\]
When x = 2:
\[
f\left( 2 \right) = 4\left( 2 \right){^3} - 12\left( 2 \right) \\
\Rightarrow f\left( 2 \right) = 32 - 24 \\
\Rightarrow f\left( 2 \right) = 8 \;
\]
When x = 3:
\[
f\left( 3 \right) = 4\left( 3 \right){^3} - 12\left( 3 \right) \\
\Rightarrow f\left( 3 \right) = 108 - 36 \\
\Rightarrow f\left( 3 \right) = 72 \;
\]
We can see that the minimum and maximum values of the function in this interval is -8 and 72 respectively.
So, the image of the interval for the given curve is [-8, 72]
So, the correct answer is “Option B”.
Note: We can also find the required image by the derivative method.
The given curve is \[f\left( x \right) = 4x{^3} - 12x\]
The derivative of this function is given as:
\[
f'\left( x \right) = 12x{^2} - 12x \\
\left( {\because f'{{\left( x \right)}^n}} \right) = n{x^{n - 1}} \\
\Rightarrow f'\left( x \right) = 12\left( {x{^2} - 1} \right) \\
\]
When we equate this equal to 0, we get the value as:
$
f'(x) = 0 \\
\Rightarrow 12\left( {{x^2} - 1} \right) = 0 \\
\Rightarrow {x^2} - 1 = 0 \\
\Rightarrow {x^2} = 1 \\
\Rightarrow x = \pm 1 \;
$
The minimum value will be given by $ x > 0 $ i.e. when x = 1.
$
\Rightarrow f\left( 1 \right) = 4{\left( 1 \right)^3} - 12\left( 1 \right) \\
\Rightarrow f\left( 1 \right) = - 8 \;
$
Now, the interval extremes are -1 and 3 and either of them can give the maximum value, so we can try for both.
\[
f\left( { - 1} \right) = 4\left( { - 1} \right){^3} - 12\left( { - 1} \right) \\
\Rightarrow f\left( { - 1} \right) = 8 \;
\]
\[
f\left( 3 \right) = 4\left( 3 \right){^3} - 12\left( 3 \right) \\
\Rightarrow f\left( 3 \right) = 72 \;
\]
So, the maximum value is 8.
Therefore, the image will be at [-8, 72]
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

