
The image of the interval [-1, 3] under the mapping \[f\left( x \right) = 4x{^3} - 12x\] is
A) [-2, 0]
B) [-8, 72]
C) [-8, 0]
D) [-8, -2]
Answer
484.2k+ views
Hint: The equation of the curve and the interval of these curves is also given. We can substitute the values lying between the given intervals in the function and see the minimum and maximum values obtained. These value intervals will provide us the required image interval.
Complete step by step solution:
The given equation of the curve is \[f\left( x \right) = 4x{^3} - 12x\] and its interval is [-1, 3].
The image of this interval under the mapping of the given curve will be given by the minimum and maximum value of this function when x belongs to this interval.
We have 5 values of x lying between the intervals that are: -1, 0, 1, 2, 3. Substituting these values of variable in the given function, we get:
When x = -1:
\[
f\left( { - 1} \right) = 4\left( { - 1} \right){^3} - 12\left( { - 1} \right) \\
\Rightarrow f\left( { - 1} \right) = - 4 + 12 \\
\Rightarrow f\left( { - 1} \right) = 8 \;
\]
When x = 0:
\[
f\left( 0 \right) = 4\left( 0 \right){^3} - 12\left( 0 \right) \\
\Rightarrow f\left( 0 \right) = 0 - 0 \\
\Rightarrow f\left( 0 \right) = 0 \;
\]
When x = 1:
\[
f\left( 1 \right) = 4\left( 1 \right){^3} - 12\left( 1 \right) \\
\Rightarrow f\left( 1 \right) = 4 - 12 \\
\Rightarrow f\left( 1 \right) = - 8 \;
\]
When x = 2:
\[
f\left( 2 \right) = 4\left( 2 \right){^3} - 12\left( 2 \right) \\
\Rightarrow f\left( 2 \right) = 32 - 24 \\
\Rightarrow f\left( 2 \right) = 8 \;
\]
When x = 3:
\[
f\left( 3 \right) = 4\left( 3 \right){^3} - 12\left( 3 \right) \\
\Rightarrow f\left( 3 \right) = 108 - 36 \\
\Rightarrow f\left( 3 \right) = 72 \;
\]
We can see that the minimum and maximum values of the function in this interval is -8 and 72 respectively.
So, the image of the interval for the given curve is [-8, 72]
So, the correct answer is “Option B”.
Note: We can also find the required image by the derivative method.
The given curve is \[f\left( x \right) = 4x{^3} - 12x\]
The derivative of this function is given as:
\[
f'\left( x \right) = 12x{^2} - 12x \\
\left( {\because f'{{\left( x \right)}^n}} \right) = n{x^{n - 1}} \\
\Rightarrow f'\left( x \right) = 12\left( {x{^2} - 1} \right) \\
\]
When we equate this equal to 0, we get the value as:
$
f'(x) = 0 \\
\Rightarrow 12\left( {{x^2} - 1} \right) = 0 \\
\Rightarrow {x^2} - 1 = 0 \\
\Rightarrow {x^2} = 1 \\
\Rightarrow x = \pm 1 \;
$
The minimum value will be given by $ x > 0 $ i.e. when x = 1.
$
\Rightarrow f\left( 1 \right) = 4{\left( 1 \right)^3} - 12\left( 1 \right) \\
\Rightarrow f\left( 1 \right) = - 8 \;
$
Now, the interval extremes are -1 and 3 and either of them can give the maximum value, so we can try for both.
\[
f\left( { - 1} \right) = 4\left( { - 1} \right){^3} - 12\left( { - 1} \right) \\
\Rightarrow f\left( { - 1} \right) = 8 \;
\]
\[
f\left( 3 \right) = 4\left( 3 \right){^3} - 12\left( 3 \right) \\
\Rightarrow f\left( 3 \right) = 72 \;
\]
So, the maximum value is 8.
Therefore, the image will be at [-8, 72]
Complete step by step solution:
The given equation of the curve is \[f\left( x \right) = 4x{^3} - 12x\] and its interval is [-1, 3].
The image of this interval under the mapping of the given curve will be given by the minimum and maximum value of this function when x belongs to this interval.
We have 5 values of x lying between the intervals that are: -1, 0, 1, 2, 3. Substituting these values of variable in the given function, we get:
When x = -1:
\[
f\left( { - 1} \right) = 4\left( { - 1} \right){^3} - 12\left( { - 1} \right) \\
\Rightarrow f\left( { - 1} \right) = - 4 + 12 \\
\Rightarrow f\left( { - 1} \right) = 8 \;
\]
When x = 0:
\[
f\left( 0 \right) = 4\left( 0 \right){^3} - 12\left( 0 \right) \\
\Rightarrow f\left( 0 \right) = 0 - 0 \\
\Rightarrow f\left( 0 \right) = 0 \;
\]
When x = 1:
\[
f\left( 1 \right) = 4\left( 1 \right){^3} - 12\left( 1 \right) \\
\Rightarrow f\left( 1 \right) = 4 - 12 \\
\Rightarrow f\left( 1 \right) = - 8 \;
\]
When x = 2:
\[
f\left( 2 \right) = 4\left( 2 \right){^3} - 12\left( 2 \right) \\
\Rightarrow f\left( 2 \right) = 32 - 24 \\
\Rightarrow f\left( 2 \right) = 8 \;
\]
When x = 3:
\[
f\left( 3 \right) = 4\left( 3 \right){^3} - 12\left( 3 \right) \\
\Rightarrow f\left( 3 \right) = 108 - 36 \\
\Rightarrow f\left( 3 \right) = 72 \;
\]
We can see that the minimum and maximum values of the function in this interval is -8 and 72 respectively.
So, the image of the interval for the given curve is [-8, 72]
So, the correct answer is “Option B”.
Note: We can also find the required image by the derivative method.
The given curve is \[f\left( x \right) = 4x{^3} - 12x\]
The derivative of this function is given as:
\[
f'\left( x \right) = 12x{^2} - 12x \\
\left( {\because f'{{\left( x \right)}^n}} \right) = n{x^{n - 1}} \\
\Rightarrow f'\left( x \right) = 12\left( {x{^2} - 1} \right) \\
\]
When we equate this equal to 0, we get the value as:
$
f'(x) = 0 \\
\Rightarrow 12\left( {{x^2} - 1} \right) = 0 \\
\Rightarrow {x^2} - 1 = 0 \\
\Rightarrow {x^2} = 1 \\
\Rightarrow x = \pm 1 \;
$
The minimum value will be given by $ x > 0 $ i.e. when x = 1.
$
\Rightarrow f\left( 1 \right) = 4{\left( 1 \right)^3} - 12\left( 1 \right) \\
\Rightarrow f\left( 1 \right) = - 8 \;
$
Now, the interval extremes are -1 and 3 and either of them can give the maximum value, so we can try for both.
\[
f\left( { - 1} \right) = 4\left( { - 1} \right){^3} - 12\left( { - 1} \right) \\
\Rightarrow f\left( { - 1} \right) = 8 \;
\]
\[
f\left( 3 \right) = 4\left( 3 \right){^3} - 12\left( 3 \right) \\
\Rightarrow f\left( 3 \right) = 72 \;
\]
So, the maximum value is 8.
Therefore, the image will be at [-8, 72]
Recently Updated Pages
Master Class 4 Maths: Engaging Questions & Answers for Success

Master Class 4 English: Engaging Questions & Answers for Success

Master Class 4 Science: Engaging Questions & Answers for Success

Class 4 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Give 10 examples of unisexual and bisexual flowers

Draw a labelled sketch of the human eye class 12 physics CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE
