
The image of the interval [-1, 3] under the mapping \[f\left( x \right) = 4x{^3} - 12x\] is
A) [-2, 0]
B) [-8, 72]
C) [-8, 0]
D) [-8, -2]
Answer
556.2k+ views
Hint: The equation of the curve and the interval of these curves is also given. We can substitute the values lying between the given intervals in the function and see the minimum and maximum values obtained. These value intervals will provide us the required image interval.
Complete step by step solution:
The given equation of the curve is \[f\left( x \right) = 4x{^3} - 12x\] and its interval is [-1, 3].
The image of this interval under the mapping of the given curve will be given by the minimum and maximum value of this function when x belongs to this interval.
We have 5 values of x lying between the intervals that are: -1, 0, 1, 2, 3. Substituting these values of variable in the given function, we get:
When x = -1:
\[
f\left( { - 1} \right) = 4\left( { - 1} \right){^3} - 12\left( { - 1} \right) \\
\Rightarrow f\left( { - 1} \right) = - 4 + 12 \\
\Rightarrow f\left( { - 1} \right) = 8 \;
\]
When x = 0:
\[
f\left( 0 \right) = 4\left( 0 \right){^3} - 12\left( 0 \right) \\
\Rightarrow f\left( 0 \right) = 0 - 0 \\
\Rightarrow f\left( 0 \right) = 0 \;
\]
When x = 1:
\[
f\left( 1 \right) = 4\left( 1 \right){^3} - 12\left( 1 \right) \\
\Rightarrow f\left( 1 \right) = 4 - 12 \\
\Rightarrow f\left( 1 \right) = - 8 \;
\]
When x = 2:
\[
f\left( 2 \right) = 4\left( 2 \right){^3} - 12\left( 2 \right) \\
\Rightarrow f\left( 2 \right) = 32 - 24 \\
\Rightarrow f\left( 2 \right) = 8 \;
\]
When x = 3:
\[
f\left( 3 \right) = 4\left( 3 \right){^3} - 12\left( 3 \right) \\
\Rightarrow f\left( 3 \right) = 108 - 36 \\
\Rightarrow f\left( 3 \right) = 72 \;
\]
We can see that the minimum and maximum values of the function in this interval is -8 and 72 respectively.
So, the image of the interval for the given curve is [-8, 72]
So, the correct answer is “Option B”.
Note: We can also find the required image by the derivative method.
The given curve is \[f\left( x \right) = 4x{^3} - 12x\]
The derivative of this function is given as:
\[
f'\left( x \right) = 12x{^2} - 12x \\
\left( {\because f'{{\left( x \right)}^n}} \right) = n{x^{n - 1}} \\
\Rightarrow f'\left( x \right) = 12\left( {x{^2} - 1} \right) \\
\]
When we equate this equal to 0, we get the value as:
$
f'(x) = 0 \\
\Rightarrow 12\left( {{x^2} - 1} \right) = 0 \\
\Rightarrow {x^2} - 1 = 0 \\
\Rightarrow {x^2} = 1 \\
\Rightarrow x = \pm 1 \;
$
The minimum value will be given by $ x > 0 $ i.e. when x = 1.
$
\Rightarrow f\left( 1 \right) = 4{\left( 1 \right)^3} - 12\left( 1 \right) \\
\Rightarrow f\left( 1 \right) = - 8 \;
$
Now, the interval extremes are -1 and 3 and either of them can give the maximum value, so we can try for both.
\[
f\left( { - 1} \right) = 4\left( { - 1} \right){^3} - 12\left( { - 1} \right) \\
\Rightarrow f\left( { - 1} \right) = 8 \;
\]
\[
f\left( 3 \right) = 4\left( 3 \right){^3} - 12\left( 3 \right) \\
\Rightarrow f\left( 3 \right) = 72 \;
\]
So, the maximum value is 8.
Therefore, the image will be at [-8, 72]
Complete step by step solution:
The given equation of the curve is \[f\left( x \right) = 4x{^3} - 12x\] and its interval is [-1, 3].
The image of this interval under the mapping of the given curve will be given by the minimum and maximum value of this function when x belongs to this interval.
We have 5 values of x lying between the intervals that are: -1, 0, 1, 2, 3. Substituting these values of variable in the given function, we get:
When x = -1:
\[
f\left( { - 1} \right) = 4\left( { - 1} \right){^3} - 12\left( { - 1} \right) \\
\Rightarrow f\left( { - 1} \right) = - 4 + 12 \\
\Rightarrow f\left( { - 1} \right) = 8 \;
\]
When x = 0:
\[
f\left( 0 \right) = 4\left( 0 \right){^3} - 12\left( 0 \right) \\
\Rightarrow f\left( 0 \right) = 0 - 0 \\
\Rightarrow f\left( 0 \right) = 0 \;
\]
When x = 1:
\[
f\left( 1 \right) = 4\left( 1 \right){^3} - 12\left( 1 \right) \\
\Rightarrow f\left( 1 \right) = 4 - 12 \\
\Rightarrow f\left( 1 \right) = - 8 \;
\]
When x = 2:
\[
f\left( 2 \right) = 4\left( 2 \right){^3} - 12\left( 2 \right) \\
\Rightarrow f\left( 2 \right) = 32 - 24 \\
\Rightarrow f\left( 2 \right) = 8 \;
\]
When x = 3:
\[
f\left( 3 \right) = 4\left( 3 \right){^3} - 12\left( 3 \right) \\
\Rightarrow f\left( 3 \right) = 108 - 36 \\
\Rightarrow f\left( 3 \right) = 72 \;
\]
We can see that the minimum and maximum values of the function in this interval is -8 and 72 respectively.
So, the image of the interval for the given curve is [-8, 72]
So, the correct answer is “Option B”.
Note: We can also find the required image by the derivative method.
The given curve is \[f\left( x \right) = 4x{^3} - 12x\]
The derivative of this function is given as:
\[
f'\left( x \right) = 12x{^2} - 12x \\
\left( {\because f'{{\left( x \right)}^n}} \right) = n{x^{n - 1}} \\
\Rightarrow f'\left( x \right) = 12\left( {x{^2} - 1} \right) \\
\]
When we equate this equal to 0, we get the value as:
$
f'(x) = 0 \\
\Rightarrow 12\left( {{x^2} - 1} \right) = 0 \\
\Rightarrow {x^2} - 1 = 0 \\
\Rightarrow {x^2} = 1 \\
\Rightarrow x = \pm 1 \;
$
The minimum value will be given by $ x > 0 $ i.e. when x = 1.
$
\Rightarrow f\left( 1 \right) = 4{\left( 1 \right)^3} - 12\left( 1 \right) \\
\Rightarrow f\left( 1 \right) = - 8 \;
$
Now, the interval extremes are -1 and 3 and either of them can give the maximum value, so we can try for both.
\[
f\left( { - 1} \right) = 4\left( { - 1} \right){^3} - 12\left( { - 1} \right) \\
\Rightarrow f\left( { - 1} \right) = 8 \;
\]
\[
f\left( 3 \right) = 4\left( 3 \right){^3} - 12\left( 3 \right) \\
\Rightarrow f\left( 3 \right) = 72 \;
\]
So, the maximum value is 8.
Therefore, the image will be at [-8, 72]
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

