
The image of the interval [-1, 3] under the mapping $f:R\to R$ given by $f\left( x \right)=4{{x}^{3}}-12x$ is
\[\begin{align}
& A.\left[ 8,72 \right] \\
& B.\left[ 0,72 \right] \\
& C.\left[ 0,8 \right] \\
& D.\left[ -8,8 \right] \\
\end{align}\]
Answer
586.5k+ views
Hint: To solve this question, we will first of all compute f'(x) and put \[\text{f}'\left( \text{x} \right)=0\]. After doing so, we will try to obtain all values of x possible when f'(x) becomes equal to 0. Finally, we will take the value of f(x) for all x values and compute which one is greatest or least to compute the interest.
Complete step by step answer:
Least or largest values of a function g(x), $g\left( x \right):X\to Y$ can be obtained by computing g'(x) and putting \[\text{g}'\left( \text{x} \right)=0\] to get values of x and then finally compute g at that obtained value of x to get highest and lowest values. So, we will use this technique for f(x).
We have $f\left( x \right)=4{{x}^{3}}-12x$ and interval is given as [-1, 3], when x = -1.
\[\begin{align}
& f\left( x \right)=4{{x}^{3}}-12x \\
& f\left( -1 \right)=4{{\left( -1 \right)}^{3}}-12\left( -1 \right) \\
& \Rightarrow 4\left( -1 \right)+12 \\
& \Rightarrow -4+12 \\
& \Rightarrow 8 \\
\end{align}\]
So, \[f\left( -1 \right)=8\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)}\]
When x = 3 then f(x) is
\[\begin{align}
& f\left( x \right)=4{{x}^{3}}-12x \\
& f\left( 3 \right)=4{{\left( 3 \right)}^{3}}-12\left( 3 \right) \\
& \Rightarrow 4\times 27-36 \\
& \Rightarrow 108-36 \\
& \Rightarrow 72 \\
\end{align}\]
So, \[f\left( 3 \right)=72\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)}\]
Now, finally we will compute f'(x).
Differentiating f(x) with respect to x, we get:
\[f'\left( x \right)=\dfrac{d}{dx}\left( 4{{x}^{3}} \right)-\dfrac{d}{dx}\left( 12x \right)\]
$\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}$ using this we have:
\[\begin{align}
& f'\left( x \right)=4\times 3{{x}^{2}}-12 \\
& f'\left( x \right)=12{{x}^{2}}-12 \\
\end{align}\]
Putting \[\text{f}'\left( \text{x} \right)=0\] we get:
\[\begin{align}
& f'\left( x \right)=0 \\
& 12{{x}^{2}}-12=0 \\
& 12{{x}^{2}}=12 \\
\end{align}\]
Cancelling 12 from both sides, we get:
\[\begin{align}
& {{x}^{2}}=1 \\
& x=+1,-1 \\
\end{align}\]
So, the possible values of x are +1 and -1.
$f\left( x \right)=f\left( -1 \right)=8$ already computed and $f\left( x \right)=f\left( 1 \right)=4\times 1-12\times 1=4-12=-8\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (iii)}$
So from equation (i), (ii) and (iii) we get that max value of f(x)=72 at x=3 and minimum value of f(x)=-8 at x=1.
The image interval is given by [-8, 72] so option C is correct.
Note:
The key point to note here in this question is that the maximum value of f(x) as 72 is obtained at x=3 and not on $x\ne 1$ So while calculating least or greatest value apart from all x obtained by putting f'(x)=0 also check for all x which comes in given interval of the question.
Complete step by step answer:
Least or largest values of a function g(x), $g\left( x \right):X\to Y$ can be obtained by computing g'(x) and putting \[\text{g}'\left( \text{x} \right)=0\] to get values of x and then finally compute g at that obtained value of x to get highest and lowest values. So, we will use this technique for f(x).
We have $f\left( x \right)=4{{x}^{3}}-12x$ and interval is given as [-1, 3], when x = -1.
\[\begin{align}
& f\left( x \right)=4{{x}^{3}}-12x \\
& f\left( -1 \right)=4{{\left( -1 \right)}^{3}}-12\left( -1 \right) \\
& \Rightarrow 4\left( -1 \right)+12 \\
& \Rightarrow -4+12 \\
& \Rightarrow 8 \\
\end{align}\]
So, \[f\left( -1 \right)=8\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)}\]
When x = 3 then f(x) is
\[\begin{align}
& f\left( x \right)=4{{x}^{3}}-12x \\
& f\left( 3 \right)=4{{\left( 3 \right)}^{3}}-12\left( 3 \right) \\
& \Rightarrow 4\times 27-36 \\
& \Rightarrow 108-36 \\
& \Rightarrow 72 \\
\end{align}\]
So, \[f\left( 3 \right)=72\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)}\]
Now, finally we will compute f'(x).
Differentiating f(x) with respect to x, we get:
\[f'\left( x \right)=\dfrac{d}{dx}\left( 4{{x}^{3}} \right)-\dfrac{d}{dx}\left( 12x \right)\]
$\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}$ using this we have:
\[\begin{align}
& f'\left( x \right)=4\times 3{{x}^{2}}-12 \\
& f'\left( x \right)=12{{x}^{2}}-12 \\
\end{align}\]
Putting \[\text{f}'\left( \text{x} \right)=0\] we get:
\[\begin{align}
& f'\left( x \right)=0 \\
& 12{{x}^{2}}-12=0 \\
& 12{{x}^{2}}=12 \\
\end{align}\]
Cancelling 12 from both sides, we get:
\[\begin{align}
& {{x}^{2}}=1 \\
& x=+1,-1 \\
\end{align}\]
So, the possible values of x are +1 and -1.
$f\left( x \right)=f\left( -1 \right)=8$ already computed and $f\left( x \right)=f\left( 1 \right)=4\times 1-12\times 1=4-12=-8\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (iii)}$
So from equation (i), (ii) and (iii) we get that max value of f(x)=72 at x=3 and minimum value of f(x)=-8 at x=1.
The image interval is given by [-8, 72] so option C is correct.
Note:
The key point to note here in this question is that the maximum value of f(x) as 72 is obtained at x=3 and not on $x\ne 1$ So while calculating least or greatest value apart from all x obtained by putting f'(x)=0 also check for all x which comes in given interval of the question.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Who is the Brand Ambassador of Incredible India?

