
The hypotenuse of a right-angled triangle is 25 cm. The other two sides are such that one is 5 cm longer than the other. Their lengths (in cm) are:
1) 10, 15
2) 20, 25
3) 15, 20
4) 25, 30
Answer
588.9k+ views
Hint: First, we will find the length of other sides. Then use the Pythagorean theorem on the sides of triangle and the property \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\] to simplify the equation. Then we will factor the equation to find the value of \[x\].
Complete step-by-step answer:
It is given that the hypotenuse is 25 cm.
Let the other two sides are \[x\] and \[x + 5\] respectively.
First, we will draw the triangle where the hypotenuse is 25 cm, the height is \[x\] cm and the base is \[x + 5\] cm.
We know that the Pythagorean theorem \[{h^2} = {a^2} + {b^2}\], where \[h\] is the hypotenuse, \[a\] is the height and \[b\] is the base of the triangle.
Using the Pythagorean theorem on the given sides of the right-angled triangle, we get
\[{x^2} + {\left( {x + 5} \right)^2} = {25^2}\]
Using the property \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\] in the above equation, we get
\[
\Rightarrow {x^2} + {x^2} + 10x + 25 = 625 \\
\Rightarrow 2{x^2} + 10x + 25 = 625 \\
\Rightarrow 2{x^2} + 10x - 600 = 0 \\
\]
We will now factor the above equation,
\[
\Rightarrow 2{x^2} + 40x - 30x - 600 = 0 \\
\Rightarrow 2x\left( {x + 20} \right) - 30\left( {x + 20} \right) = 0 \\
\Rightarrow \left( {2x - 30} \right)\left( {x + 20} \right) = 0 \\
\]
\[ \Rightarrow 2x - 30 = 0\] or \[ \Rightarrow x + 20 = 0\]
\[
\Rightarrow x = \dfrac{{30}}{2} \\
= 15 \\
\] or \[ \Rightarrow x = - 20\]
Since the side of a right-angled triangle cannot be negative, we will discard \[x = - 20\].
Substituting this value of \[x\] in \[x + 5\], we get
\[15 + 5 = 20\]
Thus, the length of other sides of the triangle is 15 and 20 respectively.
Hence, option C is correct.
Note: In these types of questions, we will draw the diagram of a right-angled triangle for better understanding. In this question, first of all, note that the equation can also be factored using the quadratic formula to find the value of \[x\]. Also, some students end the question right after calculating the value of \[x\] and forget to find the other side.
Complete step-by-step answer:
It is given that the hypotenuse is 25 cm.
Let the other two sides are \[x\] and \[x + 5\] respectively.
First, we will draw the triangle where the hypotenuse is 25 cm, the height is \[x\] cm and the base is \[x + 5\] cm.
We know that the Pythagorean theorem \[{h^2} = {a^2} + {b^2}\], where \[h\] is the hypotenuse, \[a\] is the height and \[b\] is the base of the triangle.
Using the Pythagorean theorem on the given sides of the right-angled triangle, we get
\[{x^2} + {\left( {x + 5} \right)^2} = {25^2}\]
Using the property \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\] in the above equation, we get
\[
\Rightarrow {x^2} + {x^2} + 10x + 25 = 625 \\
\Rightarrow 2{x^2} + 10x + 25 = 625 \\
\Rightarrow 2{x^2} + 10x - 600 = 0 \\
\]
We will now factor the above equation,
\[
\Rightarrow 2{x^2} + 40x - 30x - 600 = 0 \\
\Rightarrow 2x\left( {x + 20} \right) - 30\left( {x + 20} \right) = 0 \\
\Rightarrow \left( {2x - 30} \right)\left( {x + 20} \right) = 0 \\
\]
\[ \Rightarrow 2x - 30 = 0\] or \[ \Rightarrow x + 20 = 0\]
\[
\Rightarrow x = \dfrac{{30}}{2} \\
= 15 \\
\] or \[ \Rightarrow x = - 20\]
Since the side of a right-angled triangle cannot be negative, we will discard \[x = - 20\].
Substituting this value of \[x\] in \[x + 5\], we get
\[15 + 5 = 20\]
Thus, the length of other sides of the triangle is 15 and 20 respectively.
Hence, option C is correct.
Note: In these types of questions, we will draw the diagram of a right-angled triangle for better understanding. In this question, first of all, note that the equation can also be factored using the quadratic formula to find the value of \[x\]. Also, some students end the question right after calculating the value of \[x\] and forget to find the other side.
Recently Updated Pages
Three beakers labelled as A B and C each containing 25 mL of water were taken A small amount of NaOH anhydrous CuSO4 and NaCl were added to the beakers A B and C respectively It was observed that there was an increase in the temperature of the solutions contained in beakers A and B whereas in case of beaker C the temperature of the solution falls Which one of the following statements isarecorrect i In beakers A and B exothermic process has occurred ii In beakers A and B endothermic process has occurred iii In beaker C exothermic process has occurred iv In beaker C endothermic process has occurred

Questions & Answers - Ask your doubts

Master Class 9 Social Science: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
The average rainfall in India is A 105cm B 90cm C 120cm class 10 biology CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

Who Won 36 Oscar Awards? Record Holder Revealed

Indias first jute mill was established in 1854 in A class 10 social science CBSE

Indias first jute mill was established in 1854 in A class 10 social science CBSE

