
The H.C.F. of 9/10, 12/25, 18/35, 21/40 is:
A. 3/5
B. 252/5
c. 3/1400
D. 63/700
Answer
601.2k+ views
Hint – We will solve this question by using a formula, which is, H.C.F. of fractions which is equal to H.C.F. of numerator divided by the L.C.M. of denominator, for which first we will find the H.C.F. of the numerators and then the L.C.M. of the denominators.
Complete Step-by-Step solution:
Here the numbers we have are in fraction, i.e., in $\dfrac{p}{q}$form and the numbers are,
$\dfrac{9}{{10}},\dfrac{{12}}{{25}},\dfrac{{18}}{{35}}$ and $\dfrac{{21}}{{40}}$.
Now, we know that,
H.C.F. of fraction = H.C.F. of numerators / L.C.M. of denominators.
Now,
Highest Common Factor (H.C.F.) of two or more than two numbers is the greatest number that divides each of them exactly.
There are two methods of finding the H.C.F. of a given set of numbers:
1. Factorization Method
2. Division Method
But here we will use the Factorization Method.
In Factorization Method, express each one of the given numbers as the product of prime factors. The product of least powers of common prime factors gives H.C.F.
Now,
The least number which is exactly divisible by each one of the given numbers is called their L.C.M.
There are two methods of finding the L.C.M. of a given set of numbers:
1. Factorization Method
2. Division Method
But here we will use the Factorization Method.
In Factorization Method, resolve each one of the given numbers into a product of prime factors. Then, L.C.M. is the product of the highest powers of all the factors.
Now, we will calculate the H.C.F. of these fractions, by using the formula,
H.C.F. of fraction = H.C.F. of numerators / L.C.M. of denominators.
$\therefore $ H.C.F. of fraction $ = \dfrac{{H.C.F\left( {9,12,18,21} \right)}}{{L.C.M\left( {10,25,35,40} \right)}}$
First we will find the H.C.F. of the numerators,
Factors of $9 = 3 \times 3$
Factors of $12 = 3 \times 2 \times 2$
Factors of $18 = 3 \times 3 \times 2$
Factors of $21 = 3 \times 7$
Common factors $ = 3$
$\therefore $ H.F.C. $ = 3$
Now, we will find the L.C.M. of the denominators,
Factors of $10 = 5 \times 2$
Factors of $25 = 5 \times 5$
Factors of $35 = 5 \times 7$
Factors of $40 = 5 \times 2 \times 2 \times 2$
$\therefore L.C.M. = 1400$
Hence, H.C.F. $ = \dfrac{3}{{1400}}$
Thus, option C is the right answer.
Note – The largest or greatest factor common to any two or more given natural numbers is termed as H.C.F. of the given numbers. For solving these kinds of questions one must know the formula and the difference between H.C.F. and L.C.M.
Complete Step-by-Step solution:
Here the numbers we have are in fraction, i.e., in $\dfrac{p}{q}$form and the numbers are,
$\dfrac{9}{{10}},\dfrac{{12}}{{25}},\dfrac{{18}}{{35}}$ and $\dfrac{{21}}{{40}}$.
Now, we know that,
H.C.F. of fraction = H.C.F. of numerators / L.C.M. of denominators.
Now,
Highest Common Factor (H.C.F.) of two or more than two numbers is the greatest number that divides each of them exactly.
There are two methods of finding the H.C.F. of a given set of numbers:
1. Factorization Method
2. Division Method
But here we will use the Factorization Method.
In Factorization Method, express each one of the given numbers as the product of prime factors. The product of least powers of common prime factors gives H.C.F.
Now,
The least number which is exactly divisible by each one of the given numbers is called their L.C.M.
There are two methods of finding the L.C.M. of a given set of numbers:
1. Factorization Method
2. Division Method
But here we will use the Factorization Method.
In Factorization Method, resolve each one of the given numbers into a product of prime factors. Then, L.C.M. is the product of the highest powers of all the factors.
Now, we will calculate the H.C.F. of these fractions, by using the formula,
H.C.F. of fraction = H.C.F. of numerators / L.C.M. of denominators.
$\therefore $ H.C.F. of fraction $ = \dfrac{{H.C.F\left( {9,12,18,21} \right)}}{{L.C.M\left( {10,25,35,40} \right)}}$
First we will find the H.C.F. of the numerators,
Factors of $9 = 3 \times 3$
Factors of $12 = 3 \times 2 \times 2$
Factors of $18 = 3 \times 3 \times 2$
Factors of $21 = 3 \times 7$
Common factors $ = 3$
$\therefore $ H.F.C. $ = 3$
Now, we will find the L.C.M. of the denominators,
Factors of $10 = 5 \times 2$
Factors of $25 = 5 \times 5$
Factors of $35 = 5 \times 7$
Factors of $40 = 5 \times 2 \times 2 \times 2$
$\therefore L.C.M. = 1400$
Hence, H.C.F. $ = \dfrac{3}{{1400}}$
Thus, option C is the right answer.
Note – The largest or greatest factor common to any two or more given natural numbers is termed as H.C.F. of the given numbers. For solving these kinds of questions one must know the formula and the difference between H.C.F. and L.C.M.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the missing number in the sequence 259142027 class 10 maths CBSE

