
The harmonic mean of $\dfrac{a}{1-ab}$ and $\dfrac{a}{1+ab}$ is
(A) $a$
(B) \[\dfrac{a}{1-{{a}^{2}}{{b}^{2}}}\]
(C) $\dfrac{1}{1-{{a}^{2}}{{b}^{2}}}$
(D) $\dfrac{a}{1+{{a}^{2}}{{b}^{2}}}$
Answer
579.9k+ views
Hint: We solve this question by first considering the formula, harmonic mean of two numbers $a$ and $b$ is $\dfrac{2ab}{a+b}$. Then we use this formula and substitute the given numbers in it to find the harmonic mean. Then we simplify the values in numerator and denominator using the formula $\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}$. Then we substitute the numerator and denominator in the harmonic mean and simplify it to find the harmonic mean of the given numbers.
Complete step by step answer:
The numbers we are given are $\dfrac{a}{1-ab}$ and $\dfrac{a}{1+ab}$.
We need to find the harmonic mean of given two numbers.
First let us consider the formula for the harmonic mean of two numbers. Harmonic Mean of two numbers $a$ and $b$ is $\dfrac{2ab}{a+b}$
Now, using this formula we can write the harmonic mean of $\dfrac{a}{1-ab}$ and $\dfrac{a}{1+ab}$ as,
$\Rightarrow Harmonic\ Mean=\dfrac{2\times \dfrac{a}{1-ab}\times \dfrac{a}{1+ab}}{\dfrac{a}{1-ab}+\dfrac{a}{1+ab}}............\left( 1 \right)$
Now let us consider the numerator of the harmonic mean obtained above.
\[\Rightarrow 2\times \dfrac{a}{1-ab}\times \dfrac{a}{1+ab}=\dfrac{2{{a}^{2}}}{\left( 1-ab \right)\left( 1+ab \right)}\]
Now let us consider the formula, $\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}$.
Using this we can write the numerator obtained above as,
\[\Rightarrow 2\times \dfrac{a}{1-ab}\times \dfrac{a}{1+ab}=\dfrac{2{{a}^{2}}}{1-{{a}^{2}}{{b}^{2}}}..........\left( 2 \right)\]
Now let us consider the denominator in the equation (1).
\[\begin{align}
& \Rightarrow \dfrac{a}{1-ab}+\dfrac{a}{1+ab}=\dfrac{a}{1-ab}\times \dfrac{1+ab}{1+ab}+\dfrac{a}{1+ab}\times \dfrac{1-ab}{1-ab} \\
& \Rightarrow \dfrac{a}{1-ab}+\dfrac{a}{1+ab}=\dfrac{a\left( 1+ab \right)}{\left( 1-ab \right)\left( 1+ab \right)}+\dfrac{a\left( 1-ab \right)}{\left( 1-ab \right)\left( 1+ab \right)} \\
& \Rightarrow \dfrac{a}{1-ab}+\dfrac{a}{1+ab}=\dfrac{a\left( 1+ab \right)+a\left( 1-ab \right)}{\left( 1-ab \right)\left( 1+ab \right)} \\
\end{align}\]
Now let us consider the formula, $\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}$.
Using this we can write the above equation as,
\[\begin{align}
& \Rightarrow \dfrac{a}{1-ab}+\dfrac{a}{1+ab}=\dfrac{a\left( 1+ab+1-ab \right)}{1-{{a}^{2}}{{b}^{2}}} \\
& \Rightarrow \dfrac{a}{1-ab}+\dfrac{a}{1+ab}=\dfrac{a\left( 2 \right)}{1-{{a}^{2}}{{b}^{2}}} \\
& \Rightarrow \dfrac{a}{1-ab}+\dfrac{a}{1+ab}=\dfrac{2a}{1-{{a}^{2}}{{b}^{2}}}.............\left( 3 \right) \\
\end{align}\]
Substituting the values of numerator and denominator from equations (2) and (3) in equation (1) we get,
$\Rightarrow Harmonic\ Mean=\dfrac{2\times \dfrac{a}{1-ab}\times \dfrac{a}{1+ab}}{\dfrac{a}{1-ab}+\dfrac{a}{1+ab}}$
$\Rightarrow Harmonic\ Mean=\dfrac{\dfrac{2{{a}^{2}}}{1-{{a}^{2}}{{b}^{2}}}}{\dfrac{2a}{1-{{a}^{2}}{{b}^{2}}}}$
$\begin{align}
& \Rightarrow Harmonic\ Mean=\dfrac{2{{a}^{2}}}{2a} \\
& \therefore Harmonic\ Mean=a \\
\end{align}$
So, we get the harmonic mean of $\dfrac{a}{1-ab}$ and $\dfrac{a}{1+ab}$ equal to $a$.
Hence the answer is Option A.
Note:
We can also solve this question in an alternate process by considering the property that Harmonic mean of two numbers is equal to the inverse of the arithmetic mean of their inverses, that is, harmonic mean of $a$ and $b$ is equal to inverse of arithmetic mean of $\dfrac{1}{a}$ and $\dfrac{1}{b}$. So, we need to find the arithmetic mean of their inverses, that is \[\dfrac{1-ab}{a}\] and $\dfrac{1+ab}{a}$. Then its inverse is our required harmonic mean.
Complete step by step answer:
The numbers we are given are $\dfrac{a}{1-ab}$ and $\dfrac{a}{1+ab}$.
We need to find the harmonic mean of given two numbers.
First let us consider the formula for the harmonic mean of two numbers. Harmonic Mean of two numbers $a$ and $b$ is $\dfrac{2ab}{a+b}$
Now, using this formula we can write the harmonic mean of $\dfrac{a}{1-ab}$ and $\dfrac{a}{1+ab}$ as,
$\Rightarrow Harmonic\ Mean=\dfrac{2\times \dfrac{a}{1-ab}\times \dfrac{a}{1+ab}}{\dfrac{a}{1-ab}+\dfrac{a}{1+ab}}............\left( 1 \right)$
Now let us consider the numerator of the harmonic mean obtained above.
\[\Rightarrow 2\times \dfrac{a}{1-ab}\times \dfrac{a}{1+ab}=\dfrac{2{{a}^{2}}}{\left( 1-ab \right)\left( 1+ab \right)}\]
Now let us consider the formula, $\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}$.
Using this we can write the numerator obtained above as,
\[\Rightarrow 2\times \dfrac{a}{1-ab}\times \dfrac{a}{1+ab}=\dfrac{2{{a}^{2}}}{1-{{a}^{2}}{{b}^{2}}}..........\left( 2 \right)\]
Now let us consider the denominator in the equation (1).
\[\begin{align}
& \Rightarrow \dfrac{a}{1-ab}+\dfrac{a}{1+ab}=\dfrac{a}{1-ab}\times \dfrac{1+ab}{1+ab}+\dfrac{a}{1+ab}\times \dfrac{1-ab}{1-ab} \\
& \Rightarrow \dfrac{a}{1-ab}+\dfrac{a}{1+ab}=\dfrac{a\left( 1+ab \right)}{\left( 1-ab \right)\left( 1+ab \right)}+\dfrac{a\left( 1-ab \right)}{\left( 1-ab \right)\left( 1+ab \right)} \\
& \Rightarrow \dfrac{a}{1-ab}+\dfrac{a}{1+ab}=\dfrac{a\left( 1+ab \right)+a\left( 1-ab \right)}{\left( 1-ab \right)\left( 1+ab \right)} \\
\end{align}\]
Now let us consider the formula, $\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}$.
Using this we can write the above equation as,
\[\begin{align}
& \Rightarrow \dfrac{a}{1-ab}+\dfrac{a}{1+ab}=\dfrac{a\left( 1+ab+1-ab \right)}{1-{{a}^{2}}{{b}^{2}}} \\
& \Rightarrow \dfrac{a}{1-ab}+\dfrac{a}{1+ab}=\dfrac{a\left( 2 \right)}{1-{{a}^{2}}{{b}^{2}}} \\
& \Rightarrow \dfrac{a}{1-ab}+\dfrac{a}{1+ab}=\dfrac{2a}{1-{{a}^{2}}{{b}^{2}}}.............\left( 3 \right) \\
\end{align}\]
Substituting the values of numerator and denominator from equations (2) and (3) in equation (1) we get,
$\Rightarrow Harmonic\ Mean=\dfrac{2\times \dfrac{a}{1-ab}\times \dfrac{a}{1+ab}}{\dfrac{a}{1-ab}+\dfrac{a}{1+ab}}$
$\Rightarrow Harmonic\ Mean=\dfrac{\dfrac{2{{a}^{2}}}{1-{{a}^{2}}{{b}^{2}}}}{\dfrac{2a}{1-{{a}^{2}}{{b}^{2}}}}$
$\begin{align}
& \Rightarrow Harmonic\ Mean=\dfrac{2{{a}^{2}}}{2a} \\
& \therefore Harmonic\ Mean=a \\
\end{align}$
So, we get the harmonic mean of $\dfrac{a}{1-ab}$ and $\dfrac{a}{1+ab}$ equal to $a$.
Hence the answer is Option A.
Note:
We can also solve this question in an alternate process by considering the property that Harmonic mean of two numbers is equal to the inverse of the arithmetic mean of their inverses, that is, harmonic mean of $a$ and $b$ is equal to inverse of arithmetic mean of $\dfrac{1}{a}$ and $\dfrac{1}{b}$. So, we need to find the arithmetic mean of their inverses, that is \[\dfrac{1-ab}{a}\] and $\dfrac{1+ab}{a}$. Then its inverse is our required harmonic mean.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

