
The half-life period of a first-order chemical reaction is 6.93 minutes. The time required for the completion of 99% of the chemical reaction will be: (log2 = 0.301)
A. 230.3 minutes
B. 23.03 minutes
C. 46.06 minutes
D. 460.6 minutes
Answer
594k+ views
Hint: First order reactions are those reactions which depend on the concentration of only one reactant. Half-life period is the period in which the concentration of a substance reduces half of its initial value.
Complete answer:
-In the given question we have to calculate the time required in which 99% of the reaction will complete
-It is given that the half-life is equal to 6.93 minutes.
-So, firstly we will calculate the rate constant for the first-order reaction:
${{\text{k}}_{1}}\text{ = }\dfrac{\text{0}\text{.693}}{{{\text{t}}_{1/2}}}=\text{ }\dfrac{\text{0}\text{.693}}{6.93}\text{= 0}\text{.1 /min}\text{.}$
-Now, we will find the time that is required for 99% completion of the reaction by applying the first-order reaction:
$\text{k = }\dfrac{2.303}{t}\text{ log}\left( \dfrac{{{\text{A}}_{0}}}{\text{A}} \right)$
-Here the ${{\text{A}}_{0}}$represents the initial concentration which is equal to 100 and A represents the final concentration which is $\left( \text{100-99} \right)$that is 1.
-So,
$\text{t = }\dfrac{\text{2}\text{.303}}{\text{k}}\log \left( \dfrac{\text{100}}{100-99} \right)\text{ = }\dfrac{2.303}{0.1}\log \left( \dfrac{\text{1}{{\text{0}}^{2}}}{1} \right)\text{ = 23}\text{.03 }\cdot \text{ 2log10}$
$\text{= 23}\text{.03 }\cdot \text{ 2 }\cdot \text{ 1 = 46}\text{.06 minutes}$.
Therefore, option C is the correct answer.
Note: We can observe from the relation of rate constant and half-life period of first and second-order reaction that the first-order reaction is a constant but second-order reaction inversely depends on the initial concentration of the substance.
Complete answer:
-In the given question we have to calculate the time required in which 99% of the reaction will complete
-It is given that the half-life is equal to 6.93 minutes.
-So, firstly we will calculate the rate constant for the first-order reaction:
${{\text{k}}_{1}}\text{ = }\dfrac{\text{0}\text{.693}}{{{\text{t}}_{1/2}}}=\text{ }\dfrac{\text{0}\text{.693}}{6.93}\text{= 0}\text{.1 /min}\text{.}$
-Now, we will find the time that is required for 99% completion of the reaction by applying the first-order reaction:
$\text{k = }\dfrac{2.303}{t}\text{ log}\left( \dfrac{{{\text{A}}_{0}}}{\text{A}} \right)$
-Here the ${{\text{A}}_{0}}$represents the initial concentration which is equal to 100 and A represents the final concentration which is $\left( \text{100-99} \right)$that is 1.
-So,
$\text{t = }\dfrac{\text{2}\text{.303}}{\text{k}}\log \left( \dfrac{\text{100}}{100-99} \right)\text{ = }\dfrac{2.303}{0.1}\log \left( \dfrac{\text{1}{{\text{0}}^{2}}}{1} \right)\text{ = 23}\text{.03 }\cdot \text{ 2log10}$
$\text{= 23}\text{.03 }\cdot \text{ 2 }\cdot \text{ 1 = 46}\text{.06 minutes}$.
Therefore, option C is the correct answer.
Note: We can observe from the relation of rate constant and half-life period of first and second-order reaction that the first-order reaction is a constant but second-order reaction inversely depends on the initial concentration of the substance.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

