The half-life period of a first-order chemical reaction is 6.93 minutes. The time required for the completion of 99% of the chemical reaction will be: (log2 = 0.301)
A. 230.3 minutes
B. 23.03 minutes
C. 46.06 minutes
D. 460.6 minutes
Answer
335.1k+ views
Hint: First order reactions are those reactions which depend on the concentration of only one reactant. Half-life period is the period in which the concentration of a substance reduces half of its initial value.
Complete answer:
-In the given question we have to calculate the time required in which 99% of the reaction will complete
-It is given that the half-life is equal to 6.93 minutes.
-So, firstly we will calculate the rate constant for the first-order reaction:
${{\text{k}}_{1}}\text{ = }\dfrac{\text{0}\text{.693}}{{{\text{t}}_{1/2}}}=\text{ }\dfrac{\text{0}\text{.693}}{6.93}\text{= 0}\text{.1 /min}\text{.}$
-Now, we will find the time that is required for 99% completion of the reaction by applying the first-order reaction:
$\text{k = }\dfrac{2.303}{t}\text{ log}\left( \dfrac{{{\text{A}}_{0}}}{\text{A}} \right)$
-Here the ${{\text{A}}_{0}}$represents the initial concentration which is equal to 100 and A represents the final concentration which is $\left( \text{100-99} \right)$that is 1.
-So,
$\text{t = }\dfrac{\text{2}\text{.303}}{\text{k}}\log \left( \dfrac{\text{100}}{100-99} \right)\text{ = }\dfrac{2.303}{0.1}\log \left( \dfrac{\text{1}{{\text{0}}^{2}}}{1} \right)\text{ = 23}\text{.03 }\cdot \text{ 2log10}$
$\text{= 23}\text{.03 }\cdot \text{ 2 }\cdot \text{ 1 = 46}\text{.06 minutes}$.
Therefore, option C is the correct answer.
Note: We can observe from the relation of rate constant and half-life period of first and second-order reaction that the first-order reaction is a constant but second-order reaction inversely depends on the initial concentration of the substance.
Complete answer:
-In the given question we have to calculate the time required in which 99% of the reaction will complete
-It is given that the half-life is equal to 6.93 minutes.
-So, firstly we will calculate the rate constant for the first-order reaction:
${{\text{k}}_{1}}\text{ = }\dfrac{\text{0}\text{.693}}{{{\text{t}}_{1/2}}}=\text{ }\dfrac{\text{0}\text{.693}}{6.93}\text{= 0}\text{.1 /min}\text{.}$
-Now, we will find the time that is required for 99% completion of the reaction by applying the first-order reaction:
$\text{k = }\dfrac{2.303}{t}\text{ log}\left( \dfrac{{{\text{A}}_{0}}}{\text{A}} \right)$
-Here the ${{\text{A}}_{0}}$represents the initial concentration which is equal to 100 and A represents the final concentration which is $\left( \text{100-99} \right)$that is 1.
-So,
$\text{t = }\dfrac{\text{2}\text{.303}}{\text{k}}\log \left( \dfrac{\text{100}}{100-99} \right)\text{ = }\dfrac{2.303}{0.1}\log \left( \dfrac{\text{1}{{\text{0}}^{2}}}{1} \right)\text{ = 23}\text{.03 }\cdot \text{ 2log10}$
$\text{= 23}\text{.03 }\cdot \text{ 2 }\cdot \text{ 1 = 46}\text{.06 minutes}$.
Therefore, option C is the correct answer.
Note: We can observe from the relation of rate constant and half-life period of first and second-order reaction that the first-order reaction is a constant but second-order reaction inversely depends on the initial concentration of the substance.
Last updated date: 29th Sep 2023
•
Total views: 335.1k
•
Views today: 4.35k
Recently Updated Pages
Difference between hardware and software

What is the Full Form of DNA and RNA

10 Advantages and Disadvantages of Plastic

What are the Difference Between Acute and Chronic Disease

Difference Between Communicable and Non-Communicable

What is Nutrition Explain Diff Type of Nutrition ?

Trending doubts
How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

What is the IUPAC name of CH3CH CH COOH A 2Butenoic class 11 chemistry CBSE

Drive an expression for the electric field due to an class 12 physics CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference Between Plant Cell and Animal Cell

The dimensions of potential gradient are A MLT 3A 1 class 11 physics CBSE

Define electric potential and write down its dimen class 9 physics CBSE

Why is the electric field perpendicular to the equipotential class 12 physics CBSE
