
The half-life period of a first-order chemical reaction is 6.93 minutes. The time required for the completion of 99% of the chemical reaction will be: (log2 = 0.301)
A. 230.3 minutes
B. 23.03 minutes
C. 46.06 minutes
D. 460.6 minutes
Answer
485.1k+ views
Hint: First order reactions are those reactions which depend on the concentration of only one reactant. Half-life period is the period in which the concentration of a substance reduces half of its initial value.
Complete answer:
-In the given question we have to calculate the time required in which 99% of the reaction will complete
-It is given that the half-life is equal to 6.93 minutes.
-So, firstly we will calculate the rate constant for the first-order reaction:
${{\text{k}}_{1}}\text{ = }\dfrac{\text{0}\text{.693}}{{{\text{t}}_{1/2}}}=\text{ }\dfrac{\text{0}\text{.693}}{6.93}\text{= 0}\text{.1 /min}\text{.}$
-Now, we will find the time that is required for 99% completion of the reaction by applying the first-order reaction:
$\text{k = }\dfrac{2.303}{t}\text{ log}\left( \dfrac{{{\text{A}}_{0}}}{\text{A}} \right)$
-Here the ${{\text{A}}_{0}}$represents the initial concentration which is equal to 100 and A represents the final concentration which is $\left( \text{100-99} \right)$that is 1.
-So,
$\text{t = }\dfrac{\text{2}\text{.303}}{\text{k}}\log \left( \dfrac{\text{100}}{100-99} \right)\text{ = }\dfrac{2.303}{0.1}\log \left( \dfrac{\text{1}{{\text{0}}^{2}}}{1} \right)\text{ = 23}\text{.03 }\cdot \text{ 2log10}$
$\text{= 23}\text{.03 }\cdot \text{ 2 }\cdot \text{ 1 = 46}\text{.06 minutes}$.
Therefore, option C is the correct answer.
Note: We can observe from the relation of rate constant and half-life period of first and second-order reaction that the first-order reaction is a constant but second-order reaction inversely depends on the initial concentration of the substance.
Complete answer:
-In the given question we have to calculate the time required in which 99% of the reaction will complete
-It is given that the half-life is equal to 6.93 minutes.
-So, firstly we will calculate the rate constant for the first-order reaction:
${{\text{k}}_{1}}\text{ = }\dfrac{\text{0}\text{.693}}{{{\text{t}}_{1/2}}}=\text{ }\dfrac{\text{0}\text{.693}}{6.93}\text{= 0}\text{.1 /min}\text{.}$
-Now, we will find the time that is required for 99% completion of the reaction by applying the first-order reaction:
$\text{k = }\dfrac{2.303}{t}\text{ log}\left( \dfrac{{{\text{A}}_{0}}}{\text{A}} \right)$
-Here the ${{\text{A}}_{0}}$represents the initial concentration which is equal to 100 and A represents the final concentration which is $\left( \text{100-99} \right)$that is 1.
-So,
$\text{t = }\dfrac{\text{2}\text{.303}}{\text{k}}\log \left( \dfrac{\text{100}}{100-99} \right)\text{ = }\dfrac{2.303}{0.1}\log \left( \dfrac{\text{1}{{\text{0}}^{2}}}{1} \right)\text{ = 23}\text{.03 }\cdot \text{ 2log10}$
$\text{= 23}\text{.03 }\cdot \text{ 2 }\cdot \text{ 1 = 46}\text{.06 minutes}$.
Therefore, option C is the correct answer.
Note: We can observe from the relation of rate constant and half-life period of first and second-order reaction that the first-order reaction is a constant but second-order reaction inversely depends on the initial concentration of the substance.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Express the following as a fraction and simplify a class 7 maths CBSE

The length and width of a rectangle are in ratio of class 7 maths CBSE

The ratio of the income to the expenditure of a family class 7 maths CBSE

How do you write 025 million in scientific notatio class 7 maths CBSE

How do you convert 295 meters per second to kilometers class 7 maths CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

What is a transformer Explain the principle construction class 12 physics CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

What are the major means of transport Explain each class 12 social science CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
