
The half-life of first order reaction is $1.5$ hours. How much time is needed for 94% of the reactant to change to product?
Answer
544.5k+ views
Hint:In the above question, the half life of first order reaction is given and we are asked about the time needed for 94% of the reactant to change to product. We can find the rate constant from the first order half life equation and put this value of rate constant in concentration after time t equation to get the desired time.
Formula Used-
${{\text{t}}_{\dfrac{{\text{1}}}{{\text{2}}}}}{\text{ = }}\dfrac{{{\text{0}}{\text{.693}}}}{{\text{k}}}$
where ${{\text{t}}_{\dfrac{{\text{1}}}{{\text{2}}}}}{\text{ = }}$ half-life time.
k= rate constant
${{\text{[A]}}_{\text{t}}}{\text{ = [A}}{{\text{]}}_{\text{0}}}{\text{.}}{{\text{e}}^{{\text{ - kt}}}}$
Where ${{\text{[A]}}_{\text{t}}}$= concentration of reactant after time t.
${{\text{[A]}}_{\text{0}}}$=initial concentration
k= rate constant.
Complete step-by-step answer:
We know that half life is the time required for a substance to reduce to half of its concentration. In a first order reaction, the half life of the element is independent of the concentration of the element and is given by:
${{\text{t}}_{\dfrac{{\text{1}}}{{\text{2}}}}}{\text{ = }}\dfrac{{{\text{0}}{\text{.693}}}}{{\text{k}}}$
Rearranging it, we get:
${\text{k = }}\dfrac{{{\text{0}}{\text{.693}}}}{{{{\text{t}}_{\dfrac{{\text{1}}}{{\text{2}}}}}}}$
Substituting the value, we get:
${\text{k = }}\dfrac{{{\text{0}}{\text{.693}}}}{{{{\text{t}}_{\dfrac{{\text{1}}}{{\text{2}}}}}}}{\text{ = }}\dfrac{{{\text{0}}{\text{.693}}}}{{{\text{1}}{\text{.50}}}}{\text{ = 0}}{\text{.462}}{{\text{h}}^{{\text{ - 1}}}}$
The second question asked is when the reactant will reduce it to 94%.
So, let at time t, reactant concentration (${{\text{[A]}}_{\text{t}}}$) be $\left( {{\text{1 - }}\dfrac{{{\text{94}}}}{{{\text{100}}}}} \right){{\text{[A]}}_{\text{0}}}{\text{ = }}\dfrac{{{\text{6[A}}{{\text{]}}_{\text{0}}}}}{{{\text{100}}}}$
We know that:
${{\text{[A]}}_{\text{t}}}{\text{ = [A}}{{\text{]}}_{\text{0}}}{\text{.}}{{\text{e}}^{{\text{ - kt}}}}$
Substituting the value of ${{\text{[A]}}_{\text{t}}}$we get:
$\dfrac{{{\text{6[A}}{{\text{]}}_{\text{0}}}}}{{{\text{100}}}}{\text{ = [A}}{{\text{]}}_{\text{0}}}{\text{.}}{{\text{e}}^{{\text{ - kt}}}}$
Or, $\dfrac{{\text{6}}}{{{\text{100}}}}{\text{ = }}{{\text{e}}^{{\text{ - kt}}}}$
Taking ln on both the side of the equation, we get:
${\text{ln}}\left( {\dfrac{{\text{6}}}{{{\text{100}}}}} \right){\text{ = ln(}}{{\text{e}}^{{\text{ - kt}}}}{\text{)}}$
Simplifying:
${\text{ - kt = ln(6) - ln(100)}}$
Substituting the value of k, we get:
$ - 0.462t = - 2.813$
${\text{t = }}\dfrac{{{\text{ - 2}}{\text{.813}}}}{{{\text{ - 0}}{\text{.462}}}}{\text{ = 6}}{\text{.08}}$ hr
Hence,${\text{6}}{\text{.08}}$ hour is needed for 94% of the reactant to change to product.
Note:The term half life is commonly used in nuclear physics to describe how quickly an unstable atom undergoes radioactive decay or how long stable atoms survive.
Formula Used-
${{\text{t}}_{\dfrac{{\text{1}}}{{\text{2}}}}}{\text{ = }}\dfrac{{{\text{0}}{\text{.693}}}}{{\text{k}}}$
where ${{\text{t}}_{\dfrac{{\text{1}}}{{\text{2}}}}}{\text{ = }}$ half-life time.
k= rate constant
${{\text{[A]}}_{\text{t}}}{\text{ = [A}}{{\text{]}}_{\text{0}}}{\text{.}}{{\text{e}}^{{\text{ - kt}}}}$
Where ${{\text{[A]}}_{\text{t}}}$= concentration of reactant after time t.
${{\text{[A]}}_{\text{0}}}$=initial concentration
k= rate constant.
Complete step-by-step answer:
We know that half life is the time required for a substance to reduce to half of its concentration. In a first order reaction, the half life of the element is independent of the concentration of the element and is given by:
${{\text{t}}_{\dfrac{{\text{1}}}{{\text{2}}}}}{\text{ = }}\dfrac{{{\text{0}}{\text{.693}}}}{{\text{k}}}$
Rearranging it, we get:
${\text{k = }}\dfrac{{{\text{0}}{\text{.693}}}}{{{{\text{t}}_{\dfrac{{\text{1}}}{{\text{2}}}}}}}$
Substituting the value, we get:
${\text{k = }}\dfrac{{{\text{0}}{\text{.693}}}}{{{{\text{t}}_{\dfrac{{\text{1}}}{{\text{2}}}}}}}{\text{ = }}\dfrac{{{\text{0}}{\text{.693}}}}{{{\text{1}}{\text{.50}}}}{\text{ = 0}}{\text{.462}}{{\text{h}}^{{\text{ - 1}}}}$
The second question asked is when the reactant will reduce it to 94%.
So, let at time t, reactant concentration (${{\text{[A]}}_{\text{t}}}$) be $\left( {{\text{1 - }}\dfrac{{{\text{94}}}}{{{\text{100}}}}} \right){{\text{[A]}}_{\text{0}}}{\text{ = }}\dfrac{{{\text{6[A}}{{\text{]}}_{\text{0}}}}}{{{\text{100}}}}$
We know that:
${{\text{[A]}}_{\text{t}}}{\text{ = [A}}{{\text{]}}_{\text{0}}}{\text{.}}{{\text{e}}^{{\text{ - kt}}}}$
Substituting the value of ${{\text{[A]}}_{\text{t}}}$we get:
$\dfrac{{{\text{6[A}}{{\text{]}}_{\text{0}}}}}{{{\text{100}}}}{\text{ = [A}}{{\text{]}}_{\text{0}}}{\text{.}}{{\text{e}}^{{\text{ - kt}}}}$
Or, $\dfrac{{\text{6}}}{{{\text{100}}}}{\text{ = }}{{\text{e}}^{{\text{ - kt}}}}$
Taking ln on both the side of the equation, we get:
${\text{ln}}\left( {\dfrac{{\text{6}}}{{{\text{100}}}}} \right){\text{ = ln(}}{{\text{e}}^{{\text{ - kt}}}}{\text{)}}$
Simplifying:
${\text{ - kt = ln(6) - ln(100)}}$
Substituting the value of k, we get:
$ - 0.462t = - 2.813$
${\text{t = }}\dfrac{{{\text{ - 2}}{\text{.813}}}}{{{\text{ - 0}}{\text{.462}}}}{\text{ = 6}}{\text{.08}}$ hr
Hence,${\text{6}}{\text{.08}}$ hour is needed for 94% of the reactant to change to product.
Note:The term half life is commonly used in nuclear physics to describe how quickly an unstable atom undergoes radioactive decay or how long stable atoms survive.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

