
The greatest integer function is not differentiable at integral points. Give a reason. Differentiate $\sin \sqrt x $ with respect to $x$
Answer
540.9k+ views
Hint: In this question we will first give a proof as to why the greatest integer function is not differentiable at integral points and then solve the differentiation part of the question.
Complete step-by-step solution:
The Greatest Integer Function is denoted by \[y{\text{ }} = {\text{ }}\left[ x \right]\] which means it is less than or equal to $x$.
It rounds a real number to the nearest or the closest integer.
Greatest integer function isn't continuous at the integers level and any function which is discontinuous at the integer value, will be non−differentiable at that point.
As the value jumps at each integral value, therefore, it is discontinuous at each integral value.
At the Integral points, the Left-Hand of a function $ \ne $ Right-Hand Limit of the function.
Let’s consider an example, the greatest integer of 2.
We can write it as,
Left Hand Limit = \[\mathop {\lim }\limits_{h \to {0^ + }} f(2 - h) = 1\] (as h is a very small integer greatest integer to the left of $2 - h = 1$).
Also,
Right Hand Limit = \[\mathop {\lim }\limits_{h \to {0^ - }} f(2 - h) = 2\] (as h is a very small integer greatest integer to the right of\[2 - h = 2\]).
So, Left-Hand Limit $ \ne $ Right-Hand Limit
Hence Proved
Now we have to find out the differentiation of $\sin \sqrt x $ with respect to $x$
$ \Rightarrow \dfrac{{dy}}{{dx}}\operatorname{Sin} (\sqrt x )$
During derivative a chain rule is used in which there is a composite function such as $f(g(x))$ then its differentiation will be $f'g(x) \times g'(x)$.
Now we use the chain rule here, we get:
$ \Rightarrow \dfrac{{dy}}{{dx}}\operatorname{Sin} (\sqrt x ) \times \dfrac{{dy}}{{dx}}(\sqrt x )$
Here we know the general differentiation for $\dfrac{{dy}}{{dx}}\operatorname{Sin} (x) = \operatorname{Cos} (x)$ and $\dfrac{{dy}}{{dx}}\sqrt x = \dfrac{1}{{2\sqrt x }}$
$ \Rightarrow \operatorname{Cos} (\sqrt x ) \times \dfrac{1}{{2\sqrt x }}$
Upon simplifying we get:
$ \Rightarrow \dfrac{{\operatorname{Cos} (\sqrt x )}}{{2\sqrt x }}$,
Hence we get the required answer.
The required answer is $\dfrac{{\operatorname{Cos} (\sqrt x )}}{{2\sqrt x }}$.
Note: At a point, a function is differentiable when it is derivative at that point. So we defined that the tangent line of the points from the left in the slope is approaching the same value as the tangent of the points from the right in the slope.
Complete step-by-step solution:
The Greatest Integer Function is denoted by \[y{\text{ }} = {\text{ }}\left[ x \right]\] which means it is less than or equal to $x$.
It rounds a real number to the nearest or the closest integer.
Greatest integer function isn't continuous at the integers level and any function which is discontinuous at the integer value, will be non−differentiable at that point.
As the value jumps at each integral value, therefore, it is discontinuous at each integral value.
At the Integral points, the Left-Hand of a function $ \ne $ Right-Hand Limit of the function.
Let’s consider an example, the greatest integer of 2.
We can write it as,
Left Hand Limit = \[\mathop {\lim }\limits_{h \to {0^ + }} f(2 - h) = 1\] (as h is a very small integer greatest integer to the left of $2 - h = 1$).
Also,
Right Hand Limit = \[\mathop {\lim }\limits_{h \to {0^ - }} f(2 - h) = 2\] (as h is a very small integer greatest integer to the right of\[2 - h = 2\]).
So, Left-Hand Limit $ \ne $ Right-Hand Limit
Hence Proved
Now we have to find out the differentiation of $\sin \sqrt x $ with respect to $x$
$ \Rightarrow \dfrac{{dy}}{{dx}}\operatorname{Sin} (\sqrt x )$
During derivative a chain rule is used in which there is a composite function such as $f(g(x))$ then its differentiation will be $f'g(x) \times g'(x)$.
Now we use the chain rule here, we get:
$ \Rightarrow \dfrac{{dy}}{{dx}}\operatorname{Sin} (\sqrt x ) \times \dfrac{{dy}}{{dx}}(\sqrt x )$
Here we know the general differentiation for $\dfrac{{dy}}{{dx}}\operatorname{Sin} (x) = \operatorname{Cos} (x)$ and $\dfrac{{dy}}{{dx}}\sqrt x = \dfrac{1}{{2\sqrt x }}$
$ \Rightarrow \operatorname{Cos} (\sqrt x ) \times \dfrac{1}{{2\sqrt x }}$
Upon simplifying we get:
$ \Rightarrow \dfrac{{\operatorname{Cos} (\sqrt x )}}{{2\sqrt x }}$,
Hence we get the required answer.
The required answer is $\dfrac{{\operatorname{Cos} (\sqrt x )}}{{2\sqrt x }}$.
Note: At a point, a function is differentiable when it is derivative at that point. So we defined that the tangent line of the points from the left in the slope is approaching the same value as the tangent of the points from the right in the slope.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What happens if Mutations are not corrected class 12 biology CBSE

Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

