
The given function is \[F(x)=\left( \begin{align}
& \dfrac{x+3{{x}^{2}}+5{{x}^{3}}+...+(2n-1){{x}^{n}}-{{n}^{2}}}{x-1};x\ne 1 \\
& \dfrac{n({{n}^{2}}-1)}{3};x=1 \\
\end{align} \right)\] . Check if the function is continuous at x = 1
Answer
585.9k+ views
Hint: Now we know that the condition for the function to be continuous is $\underset{x\to 1}{\mathop{\lim }}\,F(x)=F(1)$ .
Hence first we will find $\underset{x\to 1}{\mathop{\lim }}\,F(x)$ . To remove indeterminate form L hospital rule. Now that the indeterminate form is removed we can substitute x = 1 to find $\underset{x\to 1}{\mathop{\lim }}\,F(x)$. Now we know that $\sum{n}=\dfrac{n\left( n+1 \right)}{2}$ and $\sum{{{n}^{2}}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}$ . we will use this to simplify the expression further. Now we know that \[F(1)=\dfrac{n({{n}^{2}}-1)}{3}\] Hence, we will check if $\underset{x\to 1}{\mathop{\lim }}\,F(x)=F(1)$ and determine if the function is continuous.
Complete step by step answer:
Now if function is continuous at x = 1 we have $\underset{x\to 1}{\mathop{\lim }}\,F(x)=F(1)$
We know that \[F(1)=\dfrac{n({{n}^{2}}-1)}{3}...................................(1)\]
Now consider $L=\underset{x\to 1}{\mathop{\lim }}\,F(x)$.
Hence we have \[L=\underset{x\to 1}{\mathop{\lim }}\,\dfrac{x+3{{x}^{2}}+5{{x}^{3}}+...+(2n-1){{x}^{n}}-{{n}^{2}}}{x-1}\]
Now to solve this limit we will use the L-Hospital rule.
According to L-Hospital rule we have $\underset{x\to 1}{\mathop{\lim }}\,\dfrac{f(x)}{g(x)}=\underset{x\to 1}{\mathop{\lim }}\,\dfrac{f'(x)}{g'(x)}$
Now we know that $\dfrac{d(f+g)}{dx}=\dfrac{df}{dx}+\dfrac{dg}{dx}$ and for any non-zero n we have $\dfrac{d{{x}^{n}}}{dx}=n{{x}^{n-1}}$
Hence we get
$\begin{align}
& L=\underset{x\to 1}{\mathop{\lim }}\,\dfrac{1+6x+15{{x}^{2}}+...+n(2n-1){{x}^{n-1}}-0}{-1} \\
& \Rightarrow L=\underset{x\to 1}{\mathop{\lim }}\,\left( 1+6x+15{{x}^{2}}+...+n(2n-1){{x}^{n-1}}-0 \right) \\
\end{align}$
Now we can substitute x = 1, to solve the limit.
\[L=\left( 1+6+15+...+n(2n-1) \right)\]
Now this is nothing but
$\begin{align}
& L=\left( 1+2\left( 2\left( 2 \right)-1 \right)+3\left( 2\left( 3 \right)-1 \right) \right)+...n(2n-1) \\
& L=\left( \sum{n(2n-1)} \right) \\
\end{align}$
Now multiplying the terms n and (2n – 1) we get
$L=\sum{\left( 2{{n}^{2}}-n \right)}$
Now we know that $\sum{\left( a-b \right)}=\sum{a}-\sum{b}$
Hence we have
$L=\left( \sum{\left( 2{{n}^{2}} \right)}-\sum{n} \right)................\left( 2 \right)$
Now we have $\sum{n}=\dfrac{n\left( n+1 \right)}{2}$ and $\sum{{{n}^{2}}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}$
Now we will substitute this expansion in (2).
$L=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{3}-\dfrac{n(n+1)}{2}$
Taking LCM we get
$\begin{align}
& L=\dfrac{2n\left( n+1 \right)\left( 2n+1 \right)-3n\left( n+1 \right)}{6} \\
& \Rightarrow L=\dfrac{n\left( n+1 \right)[2\left( 2n+1 \right)-3]}{6} \\
& \Rightarrow L=\dfrac{n\left( n+1 \right)[4n+2-3]}{6} \\
& \Rightarrow L=\dfrac{n\left( n+1 \right)\left( 4n-1 \right)}{6} \\
& \therefore L=\underset{x\to 1}{\mathop{\lim }}\,F(x)=\dfrac{n\left( n+1 \right)\left( 4n-1 \right)}{6} \\
\end{align}$
Hence we get $\underset{x\to 1}{\mathop{\lim }}\,F(x)=\dfrac{n\left( n+1 \right)\left( 4n-1 \right)}{6}............................\left( 3 \right)$
Now from equation (1) and equation (3) we get.
$\underset{x\to 1}{\mathop{\lim }}\,F(x)\ne F(1)$
Hence the function is not continuous at x = 1.
Note:
Now here we can also solve this limit by dividing \[x+3{{x}^{2}}+5{{x}^{3}}+...+(2n-1){{x}^{n}}-{{n}^{2}}\] by (x – 1), then we will have the limit in solvable form as (x – 1) from denominator will be cancelled.
Also we can solve this in short cut method
Once we have $L=\underset{x\to 1}{\mathop{\lim }}\,\left( 1+6x+15{{x}^{2}}+...+n(2n-1){{x}^{n-1}}-0 \right)$ we can check the value for n = 2 and x = 1 which will be 1 + 6 = 7
On the other hand for n = 2 we have \[\dfrac{n({{n}^{2}}-1)}{3}\] = 2.
Hence we have both values are not equal and the function is discontinuous
Hence first we will find $\underset{x\to 1}{\mathop{\lim }}\,F(x)$ . To remove indeterminate form L hospital rule. Now that the indeterminate form is removed we can substitute x = 1 to find $\underset{x\to 1}{\mathop{\lim }}\,F(x)$. Now we know that $\sum{n}=\dfrac{n\left( n+1 \right)}{2}$ and $\sum{{{n}^{2}}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}$ . we will use this to simplify the expression further. Now we know that \[F(1)=\dfrac{n({{n}^{2}}-1)}{3}\] Hence, we will check if $\underset{x\to 1}{\mathop{\lim }}\,F(x)=F(1)$ and determine if the function is continuous.
Complete step by step answer:
Now if function is continuous at x = 1 we have $\underset{x\to 1}{\mathop{\lim }}\,F(x)=F(1)$
We know that \[F(1)=\dfrac{n({{n}^{2}}-1)}{3}...................................(1)\]
Now consider $L=\underset{x\to 1}{\mathop{\lim }}\,F(x)$.
Hence we have \[L=\underset{x\to 1}{\mathop{\lim }}\,\dfrac{x+3{{x}^{2}}+5{{x}^{3}}+...+(2n-1){{x}^{n}}-{{n}^{2}}}{x-1}\]
Now to solve this limit we will use the L-Hospital rule.
According to L-Hospital rule we have $\underset{x\to 1}{\mathop{\lim }}\,\dfrac{f(x)}{g(x)}=\underset{x\to 1}{\mathop{\lim }}\,\dfrac{f'(x)}{g'(x)}$
Now we know that $\dfrac{d(f+g)}{dx}=\dfrac{df}{dx}+\dfrac{dg}{dx}$ and for any non-zero n we have $\dfrac{d{{x}^{n}}}{dx}=n{{x}^{n-1}}$
Hence we get
$\begin{align}
& L=\underset{x\to 1}{\mathop{\lim }}\,\dfrac{1+6x+15{{x}^{2}}+...+n(2n-1){{x}^{n-1}}-0}{-1} \\
& \Rightarrow L=\underset{x\to 1}{\mathop{\lim }}\,\left( 1+6x+15{{x}^{2}}+...+n(2n-1){{x}^{n-1}}-0 \right) \\
\end{align}$
Now we can substitute x = 1, to solve the limit.
\[L=\left( 1+6+15+...+n(2n-1) \right)\]
Now this is nothing but
$\begin{align}
& L=\left( 1+2\left( 2\left( 2 \right)-1 \right)+3\left( 2\left( 3 \right)-1 \right) \right)+...n(2n-1) \\
& L=\left( \sum{n(2n-1)} \right) \\
\end{align}$
Now multiplying the terms n and (2n – 1) we get
$L=\sum{\left( 2{{n}^{2}}-n \right)}$
Now we know that $\sum{\left( a-b \right)}=\sum{a}-\sum{b}$
Hence we have
$L=\left( \sum{\left( 2{{n}^{2}} \right)}-\sum{n} \right)................\left( 2 \right)$
Now we have $\sum{n}=\dfrac{n\left( n+1 \right)}{2}$ and $\sum{{{n}^{2}}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}$
Now we will substitute this expansion in (2).
$L=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{3}-\dfrac{n(n+1)}{2}$
Taking LCM we get
$\begin{align}
& L=\dfrac{2n\left( n+1 \right)\left( 2n+1 \right)-3n\left( n+1 \right)}{6} \\
& \Rightarrow L=\dfrac{n\left( n+1 \right)[2\left( 2n+1 \right)-3]}{6} \\
& \Rightarrow L=\dfrac{n\left( n+1 \right)[4n+2-3]}{6} \\
& \Rightarrow L=\dfrac{n\left( n+1 \right)\left( 4n-1 \right)}{6} \\
& \therefore L=\underset{x\to 1}{\mathop{\lim }}\,F(x)=\dfrac{n\left( n+1 \right)\left( 4n-1 \right)}{6} \\
\end{align}$
Hence we get $\underset{x\to 1}{\mathop{\lim }}\,F(x)=\dfrac{n\left( n+1 \right)\left( 4n-1 \right)}{6}............................\left( 3 \right)$
Now from equation (1) and equation (3) we get.
$\underset{x\to 1}{\mathop{\lim }}\,F(x)\ne F(1)$
Hence the function is not continuous at x = 1.
Note:
Now here we can also solve this limit by dividing \[x+3{{x}^{2}}+5{{x}^{3}}+...+(2n-1){{x}^{n}}-{{n}^{2}}\] by (x – 1), then we will have the limit in solvable form as (x – 1) from denominator will be cancelled.
Also we can solve this in short cut method
Once we have $L=\underset{x\to 1}{\mathop{\lim }}\,\left( 1+6x+15{{x}^{2}}+...+n(2n-1){{x}^{n-1}}-0 \right)$ we can check the value for n = 2 and x = 1 which will be 1 + 6 = 7
On the other hand for n = 2 we have \[\dfrac{n({{n}^{2}}-1)}{3}\] = 2.
Hence we have both values are not equal and the function is discontinuous
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

