
The geometric mean of the observations 2, 4, 8, 16, 32, 64 is
$
{\text{A}}{\text{. }}{{\text{2}}^{\dfrac{5}{2}}} \\
{\text{B}}{\text{. }}{{\text{2}}^{\dfrac{7}{2}}} \\
{\text{C}}{\text{. 33}} \\
{\text{D}}{\text{. None of these}} \\
$
Answer
597.6k+ views
Hint: - Geometric Mean (or GM) : It is a type of mean that indicates the central tendency of a set of numbers by using the product of their values. It is defined as the nth root of the product of n numbers. In this question we have to first observe the values that are used in the formula of Geometric Mean(GM) and then compute it.
Complete step-by-step answer:
$ {\overline {\text{x}} _{geom}} = {\text{ }}_{}^n\sqrt {\prod\limits_{i = 1}^n {{x_i}} } \\
\Rightarrow {\text{ }}{\overline {\text{x}} _{geom}}{\text{ }} = {\text{ }}_{}^n\sqrt {{x_1}.{x_2}.......{x_n}} \\
{\text{ where,}} \\
{\overline {\text{x}} _{geom}}{\text{ is the geometric mean(GM)}} \\
n{\text{ is the total number of observations}} \\
_{}^n\sqrt {\prod\limits_{i = 1}^n {{x_i}} } {\text{ is the }}{{\text{n}}^{th}}{\text{ square root of the product of the given numbers}} \\
$
Here observations are $2,4,8,16,32,64$
There are total 6 observations i.e., $n = 6$
$
{\text{And the observations are :}} \\
{{\text{x}}_1} = 2{\text{ }} \\
{{\text{x}}_2} = 4{\text{ }} \\
{{\text{x}}_3} = 8{\text{ }} \\
{{\text{x}}_4} = 16{\text{ }} \\
{{\text{x}}_5} = 32 \\
{{\text{x}}_6} = 64{\text{ }} \\
$
$ \Rightarrow {\overline {\text{x}} _{geom}}{\text{ }} = {\text{ }}_{}^6\sqrt {\prod\limits_{i = 1}^6 {{x_i}} } \\
{\text{On putting values of observations, we get}} \\
\Rightarrow {\overline {\text{x}} _{geom}}{\text{ = }}_{}^6\sqrt {2.4.8.16.32.64} \\
{\text{Now we can rewrite under root terms in terms of power of two in above equation }} \\
\Rightarrow {\overline {\text{x}} _{geom}}{\text{ = }}_{}^6\sqrt {{2^1}{{.2}^2}{{.2}^3}{{.2}^4}{{.2}^5}{{.2}^6}} \\
\Rightarrow {\overline {\text{x}} _{geom}}{\text{ = }}_{}^6\sqrt {{2^{(1 + 2 + 3 + 4 + 5 + 6)}}} {\text{ \{ }}\because {{\text{a}}^m}{\text{.}}{{\text{a}}^n}{\text{ = }}{{\text{a}}^{(m + n)}}\} \\
\Rightarrow {\overline {\text{x}} _{geom}}{\text{ = }}{{\text{2}}^{\dfrac{{21}}{6}}} \\
\Rightarrow {\overline {\text{x}} _{geom}}{\text{ = }}{{\text{2}}^{\dfrac{7}{2}}} \\
{\text{Hence, option B}}{\text{. is correct}} \\
$
Note:- Whenever you get this type of question the key concept of solving is you have to know the Geometric Mean (GM) formula i.e.,${\overline {\text{x}} _{geom}} = _{}^n\sqrt {\prod\limits_{i = 1}^n {{x_i}} } $and interpretation of this formula means you have knowledge about how to interpret $n,{x_1},{x_2}.....{x_n}$. Put values of $n,{x_1},{x_2}.....{x_n}$ in GM formula and then solve it to the simplest form.
Complete step-by-step answer:
$ {\overline {\text{x}} _{geom}} = {\text{ }}_{}^n\sqrt {\prod\limits_{i = 1}^n {{x_i}} } \\
\Rightarrow {\text{ }}{\overline {\text{x}} _{geom}}{\text{ }} = {\text{ }}_{}^n\sqrt {{x_1}.{x_2}.......{x_n}} \\
{\text{ where,}} \\
{\overline {\text{x}} _{geom}}{\text{ is the geometric mean(GM)}} \\
n{\text{ is the total number of observations}} \\
_{}^n\sqrt {\prod\limits_{i = 1}^n {{x_i}} } {\text{ is the }}{{\text{n}}^{th}}{\text{ square root of the product of the given numbers}} \\
$
Here observations are $2,4,8,16,32,64$
There are total 6 observations i.e., $n = 6$
$
{\text{And the observations are :}} \\
{{\text{x}}_1} = 2{\text{ }} \\
{{\text{x}}_2} = 4{\text{ }} \\
{{\text{x}}_3} = 8{\text{ }} \\
{{\text{x}}_4} = 16{\text{ }} \\
{{\text{x}}_5} = 32 \\
{{\text{x}}_6} = 64{\text{ }} \\
$
$ \Rightarrow {\overline {\text{x}} _{geom}}{\text{ }} = {\text{ }}_{}^6\sqrt {\prod\limits_{i = 1}^6 {{x_i}} } \\
{\text{On putting values of observations, we get}} \\
\Rightarrow {\overline {\text{x}} _{geom}}{\text{ = }}_{}^6\sqrt {2.4.8.16.32.64} \\
{\text{Now we can rewrite under root terms in terms of power of two in above equation }} \\
\Rightarrow {\overline {\text{x}} _{geom}}{\text{ = }}_{}^6\sqrt {{2^1}{{.2}^2}{{.2}^3}{{.2}^4}{{.2}^5}{{.2}^6}} \\
\Rightarrow {\overline {\text{x}} _{geom}}{\text{ = }}_{}^6\sqrt {{2^{(1 + 2 + 3 + 4 + 5 + 6)}}} {\text{ \{ }}\because {{\text{a}}^m}{\text{.}}{{\text{a}}^n}{\text{ = }}{{\text{a}}^{(m + n)}}\} \\
\Rightarrow {\overline {\text{x}} _{geom}}{\text{ = }}{{\text{2}}^{\dfrac{{21}}{6}}} \\
\Rightarrow {\overline {\text{x}} _{geom}}{\text{ = }}{{\text{2}}^{\dfrac{7}{2}}} \\
{\text{Hence, option B}}{\text{. is correct}} \\
$
Note:- Whenever you get this type of question the key concept of solving is you have to know the Geometric Mean (GM) formula i.e.,${\overline {\text{x}} _{geom}} = _{}^n\sqrt {\prod\limits_{i = 1}^n {{x_i}} } $and interpretation of this formula means you have knowledge about how to interpret $n,{x_1},{x_2}.....{x_n}$. Put values of $n,{x_1},{x_2}.....{x_n}$ in GM formula and then solve it to the simplest form.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

