
The general solution of the equation \[\sin x + \cos x = 1\] is
A. \[x = 2n\pi + \dfrac{\pi }{2},n = 0, \pm 1, \pm 2\]
B. \[x = n\pi + \left( {{{\left( { - 1} \right)}^n} + 1} \right)\dfrac{\pi }{4},n = 0, \pm 1, \pm 2\]
C. \[x = n\pi + \left( {{{\left( { - 1} \right)}^n} - 1} \right)\dfrac{\pi }{4},n = 0, \pm 1, \pm 2\]
D. \[x = 2n\pi ,n = 0, \pm 1, \pm 2\]
Answer
601.8k+ views
- Hint: First of all, divide both sides with \[\sqrt {{{\left( {{\text{Coefficient os }}\sin x} \right)}^2} + {{\left( {{\text{Coefficient of }}\cos x} \right)}^2}} \]. Then split the terms to make the whole equation in terms of sine angles by using the formula \[\sin A\cos B + \cos A\sin B = \sin \left( {A + B} \right)\] to obtain the required answer.
Complete step-by-step solution -
Given equation is \[\sin x + \cos x = 1\]
Dividing both sides with \[\sqrt {{{\left( {{\text{Coefficient os }}\sin x} \right)}^2} + {{\left( {{\text{Coefficient of }}\cos x} \right)}^2}} \], we get
\[
\dfrac{1}{{\sqrt {{1^2} + {1^2}} }}\left[ {\sin x + \cos x} \right] = \dfrac{1}{{\sqrt {{1^2} + {1^2}} }} \\
\dfrac{{\sin x + \cos x}}{{\sqrt 2 }} = \dfrac{1}{{\sqrt 2 }} \\
\]
Splitting the terms, we have
\[\dfrac{{\sin x}}{{\sqrt 2 }} + \dfrac{{\cos x}}{{\sqrt 2 }} = \dfrac{1}{{\sqrt 2 }}\]
As\[\cos {45^0} = \sin {45^0} = \dfrac{1}{{\sqrt 2 }}\], we have
\[\sin x\cos {45^0} + \cos x\sin {45^0} = \dfrac{1}{{\sqrt 2 }}\]
We know that \[\sin A\cos B + \cos A\sin B = \sin \left( {A + B} \right)\]
\[\sin \left( {x + {{45}^0}} \right) = \dfrac{1}{{\sqrt 2 }}\]
We know that, the general solution of \[\sin x = \dfrac{1}{{\sqrt 2 }}\] is \[x = n\pi + {\left( { - 1} \right)^n}\dfrac{\pi }{4}\]
\[\sin \left( {x + \dfrac{\pi }{4}} \right) = \sin \left( {n\pi + {{\left( { - 1} \right)}^n}\dfrac{\pi }{4}} \right)\]
Cancelling sine terms on both sides, we get
\[
x + \dfrac{\pi }{4} = n\pi + {\left( { - 1} \right)^n}\dfrac{\pi }{4} \\
x = n\pi + {\left( { - 1} \right)^n}\dfrac{\pi }{4} - \dfrac{\pi }{4} \\
x = n\pi + \left( {{{\left( { - 1} \right)}^n} - 1} \right)\dfrac{\pi }{4}{\text{ where }}n{\text{ is a integer}} \\
\]
Thus, the correct option is C. \[x = n\pi + \left( {{{\left( { - 1} \right)}^n} - 1} \right)\dfrac{\pi }{4},n = 0, \pm 1, \pm 2\]
Note: The general solution of \[\sin x = \dfrac{1}{{\sqrt 2 }}\] is \[x = n\pi + {\left( { - 1} \right)^n}\dfrac{\pi }{4}\]. If you didn’t see the option of your obtained solution, then convert the terms into cosine angles by using the formula \[\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B\].
Complete step-by-step solution -
Given equation is \[\sin x + \cos x = 1\]
Dividing both sides with \[\sqrt {{{\left( {{\text{Coefficient os }}\sin x} \right)}^2} + {{\left( {{\text{Coefficient of }}\cos x} \right)}^2}} \], we get
\[
\dfrac{1}{{\sqrt {{1^2} + {1^2}} }}\left[ {\sin x + \cos x} \right] = \dfrac{1}{{\sqrt {{1^2} + {1^2}} }} \\
\dfrac{{\sin x + \cos x}}{{\sqrt 2 }} = \dfrac{1}{{\sqrt 2 }} \\
\]
Splitting the terms, we have
\[\dfrac{{\sin x}}{{\sqrt 2 }} + \dfrac{{\cos x}}{{\sqrt 2 }} = \dfrac{1}{{\sqrt 2 }}\]
As\[\cos {45^0} = \sin {45^0} = \dfrac{1}{{\sqrt 2 }}\], we have
\[\sin x\cos {45^0} + \cos x\sin {45^0} = \dfrac{1}{{\sqrt 2 }}\]
We know that \[\sin A\cos B + \cos A\sin B = \sin \left( {A + B} \right)\]
\[\sin \left( {x + {{45}^0}} \right) = \dfrac{1}{{\sqrt 2 }}\]
We know that, the general solution of \[\sin x = \dfrac{1}{{\sqrt 2 }}\] is \[x = n\pi + {\left( { - 1} \right)^n}\dfrac{\pi }{4}\]
\[\sin \left( {x + \dfrac{\pi }{4}} \right) = \sin \left( {n\pi + {{\left( { - 1} \right)}^n}\dfrac{\pi }{4}} \right)\]
Cancelling sine terms on both sides, we get
\[
x + \dfrac{\pi }{4} = n\pi + {\left( { - 1} \right)^n}\dfrac{\pi }{4} \\
x = n\pi + {\left( { - 1} \right)^n}\dfrac{\pi }{4} - \dfrac{\pi }{4} \\
x = n\pi + \left( {{{\left( { - 1} \right)}^n} - 1} \right)\dfrac{\pi }{4}{\text{ where }}n{\text{ is a integer}} \\
\]
Thus, the correct option is C. \[x = n\pi + \left( {{{\left( { - 1} \right)}^n} - 1} \right)\dfrac{\pi }{4},n = 0, \pm 1, \pm 2\]
Note: The general solution of \[\sin x = \dfrac{1}{{\sqrt 2 }}\] is \[x = n\pi + {\left( { - 1} \right)^n}\dfrac{\pi }{4}\]. If you didn’t see the option of your obtained solution, then convert the terms into cosine angles by using the formula \[\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B\].
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

