
The general solution of the equation \[\sin x + \cos x = 1\] is
A. \[x = 2n\pi + \dfrac{\pi }{2},n = 0, \pm 1, \pm 2\]
B. \[x = n\pi + \left( {{{\left( { - 1} \right)}^n} + 1} \right)\dfrac{\pi }{4},n = 0, \pm 1, \pm 2\]
C. \[x = n\pi + \left( {{{\left( { - 1} \right)}^n} - 1} \right)\dfrac{\pi }{4},n = 0, \pm 1, \pm 2\]
D. \[x = 2n\pi ,n = 0, \pm 1, \pm 2\]
Answer
600.9k+ views
- Hint: First of all, divide both sides with \[\sqrt {{{\left( {{\text{Coefficient os }}\sin x} \right)}^2} + {{\left( {{\text{Coefficient of }}\cos x} \right)}^2}} \]. Then split the terms to make the whole equation in terms of sine angles by using the formula \[\sin A\cos B + \cos A\sin B = \sin \left( {A + B} \right)\] to obtain the required answer.
Complete step-by-step solution -
Given equation is \[\sin x + \cos x = 1\]
Dividing both sides with \[\sqrt {{{\left( {{\text{Coefficient os }}\sin x} \right)}^2} + {{\left( {{\text{Coefficient of }}\cos x} \right)}^2}} \], we get
\[
\dfrac{1}{{\sqrt {{1^2} + {1^2}} }}\left[ {\sin x + \cos x} \right] = \dfrac{1}{{\sqrt {{1^2} + {1^2}} }} \\
\dfrac{{\sin x + \cos x}}{{\sqrt 2 }} = \dfrac{1}{{\sqrt 2 }} \\
\]
Splitting the terms, we have
\[\dfrac{{\sin x}}{{\sqrt 2 }} + \dfrac{{\cos x}}{{\sqrt 2 }} = \dfrac{1}{{\sqrt 2 }}\]
As\[\cos {45^0} = \sin {45^0} = \dfrac{1}{{\sqrt 2 }}\], we have
\[\sin x\cos {45^0} + \cos x\sin {45^0} = \dfrac{1}{{\sqrt 2 }}\]
We know that \[\sin A\cos B + \cos A\sin B = \sin \left( {A + B} \right)\]
\[\sin \left( {x + {{45}^0}} \right) = \dfrac{1}{{\sqrt 2 }}\]
We know that, the general solution of \[\sin x = \dfrac{1}{{\sqrt 2 }}\] is \[x = n\pi + {\left( { - 1} \right)^n}\dfrac{\pi }{4}\]
\[\sin \left( {x + \dfrac{\pi }{4}} \right) = \sin \left( {n\pi + {{\left( { - 1} \right)}^n}\dfrac{\pi }{4}} \right)\]
Cancelling sine terms on both sides, we get
\[
x + \dfrac{\pi }{4} = n\pi + {\left( { - 1} \right)^n}\dfrac{\pi }{4} \\
x = n\pi + {\left( { - 1} \right)^n}\dfrac{\pi }{4} - \dfrac{\pi }{4} \\
x = n\pi + \left( {{{\left( { - 1} \right)}^n} - 1} \right)\dfrac{\pi }{4}{\text{ where }}n{\text{ is a integer}} \\
\]
Thus, the correct option is C. \[x = n\pi + \left( {{{\left( { - 1} \right)}^n} - 1} \right)\dfrac{\pi }{4},n = 0, \pm 1, \pm 2\]
Note: The general solution of \[\sin x = \dfrac{1}{{\sqrt 2 }}\] is \[x = n\pi + {\left( { - 1} \right)^n}\dfrac{\pi }{4}\]. If you didn’t see the option of your obtained solution, then convert the terms into cosine angles by using the formula \[\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B\].
Complete step-by-step solution -
Given equation is \[\sin x + \cos x = 1\]
Dividing both sides with \[\sqrt {{{\left( {{\text{Coefficient os }}\sin x} \right)}^2} + {{\left( {{\text{Coefficient of }}\cos x} \right)}^2}} \], we get
\[
\dfrac{1}{{\sqrt {{1^2} + {1^2}} }}\left[ {\sin x + \cos x} \right] = \dfrac{1}{{\sqrt {{1^2} + {1^2}} }} \\
\dfrac{{\sin x + \cos x}}{{\sqrt 2 }} = \dfrac{1}{{\sqrt 2 }} \\
\]
Splitting the terms, we have
\[\dfrac{{\sin x}}{{\sqrt 2 }} + \dfrac{{\cos x}}{{\sqrt 2 }} = \dfrac{1}{{\sqrt 2 }}\]
As\[\cos {45^0} = \sin {45^0} = \dfrac{1}{{\sqrt 2 }}\], we have
\[\sin x\cos {45^0} + \cos x\sin {45^0} = \dfrac{1}{{\sqrt 2 }}\]
We know that \[\sin A\cos B + \cos A\sin B = \sin \left( {A + B} \right)\]
\[\sin \left( {x + {{45}^0}} \right) = \dfrac{1}{{\sqrt 2 }}\]
We know that, the general solution of \[\sin x = \dfrac{1}{{\sqrt 2 }}\] is \[x = n\pi + {\left( { - 1} \right)^n}\dfrac{\pi }{4}\]
\[\sin \left( {x + \dfrac{\pi }{4}} \right) = \sin \left( {n\pi + {{\left( { - 1} \right)}^n}\dfrac{\pi }{4}} \right)\]
Cancelling sine terms on both sides, we get
\[
x + \dfrac{\pi }{4} = n\pi + {\left( { - 1} \right)^n}\dfrac{\pi }{4} \\
x = n\pi + {\left( { - 1} \right)^n}\dfrac{\pi }{4} - \dfrac{\pi }{4} \\
x = n\pi + \left( {{{\left( { - 1} \right)}^n} - 1} \right)\dfrac{\pi }{4}{\text{ where }}n{\text{ is a integer}} \\
\]
Thus, the correct option is C. \[x = n\pi + \left( {{{\left( { - 1} \right)}^n} - 1} \right)\dfrac{\pi }{4},n = 0, \pm 1, \pm 2\]
Note: The general solution of \[\sin x = \dfrac{1}{{\sqrt 2 }}\] is \[x = n\pi + {\left( { - 1} \right)^n}\dfrac{\pi }{4}\]. If you didn’t see the option of your obtained solution, then convert the terms into cosine angles by using the formula \[\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B\].
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

