
The gaseous decomposition of ozone, \[2{{O}_{3}}\to 3{{O}_{2}}\], obeys the rate law r =
\[-\dfrac{d\left[ {{O}_{3}} \right]}{dt}=\dfrac{k{{\left[ {{O}_{3}} \right]}^{2}}}{\left[ {{O}_{2}} \right]}\].
Show that the following mechanism is consistent with the above rate law:
\[\begin{align}
& {{O}_{3}}\overset{{{K}_{eq}}}{\mathop{\rightleftharpoons }}\,{{O}_{2}}+O(fast) \\
& O+{{O}_{3}}\xrightarrow{{{k}_{2}}}2{{O}_{2}}(slow) \\
\end{align}\]
Answer
586.2k+ views
Hint: The reaction rate is expressed as a derivative of the concentration of reactant A or product C, with respect to time, t.
Consider the following reaction:
\[2A+B\to C\]
Reaction rate can be given as
Reaction rate= \[\dfrac{decrease\text{ }in\text{ }concentration\text{ }of\text{ }reactants}{time}\]=\[\dfrac{increase\text{ }in\text{ }concentration\text{ }of\text{ }products}{time}\]
= \[-\dfrac{1}{2}\dfrac{d[A]}{dt}=-\dfrac{d[B]}{dt}=\dfrac{d[C]}{dt}\]
Complete step by step solution: In the case of fast mechanism, since it is at equilibrium:
Forward - Rate of decomposition of \[{{O}_{3}}={{k}_{1}}\left[ {{O}_{3}} \right]\]
Reverse - Rate of formation of \[{{O}_{3}}={{k}_{1}}^{'}\left[ {{O}_{2}} \right]\left[ O \right]\]
In the case of slow mechanism,
Forward - Rate of consumption of \[{{O}_{3}}={{k}_{2}}\left[ O \right]\left[ {{O}_{3}} \right]\]
The net rate of decomposition of \[{{O}_{3}}\] is given by
Rate= \[-\dfrac{d\left[ {{O}_{3}} \right]}{dt}\]= \[{{k}_{1}}\left[ {{O}_{3}} \right]-{{k}_{1}}^{'}\left[ {{O}_{2}} \right]\left[ O \right]+{{k}_{2}}\left[ O \right]\left[ {{O}_{3}} \right]\] (i)
Apply the steady-state approximation to the intermediate (O atom) and after rearranging,
\[{{k}_{1}}\left[ {{O}_{3}} \right]-{{k}_{1}}^{'}\left[ {{O}_{2}} \right]\left[ O \right]-{{k}_{2}}\left[ O \right]\left[ {{O}_{3}} \right]=0\]
\[{{k}_{1}}\left[ {{O}_{3}} \right]={{k}_{1}}^{'}\left[ {{O}_{2}} \right]\left[ O \right]+{{k}_{2}}\left[ O \right]\left[ {{O}_{3}} \right]\]
\[\left[ O \right]=\dfrac{{{k}_{1}}\left[ {{O}_{3}} \right]}{{{k}_{1}}^{'}\left[ {{O}_{2}} \right]+{{k}_{2}}\left[ {{O}_{3}} \right]}\] (ii)
From (1) and (2), we have,
\[Rate={{k}_{1}}\left[ {{O}_{3}} \right]-{{k}_{1}}^{'}\left[ {{O}_{2}} \right]\dfrac{{{k}_{1}}\left[ {{O}_{3}} \right]}{{{k}_{1}}^{'}\left[ {{O}_{2}} \right]+{{k}_{2}}\left[ {{O}_{3}} \right]}+{{k}_{2}}\dfrac{{{k}_{1}}\left[ {{O}_{3}} \right]}{{{k}_{1}}^{'}\left[ {{O}_{2}} \right]+{{k}_{2}}\left[ {{O}_{3}} \right]}\left[ {{O}_{3}} \right]\]
\[={{k}_{1}}\left[ {{O}_{3}} \right]-\dfrac{{{k}_{1}}^{'}\left[ {{O}_{2}} \right]{{k}_{1}}\left[ {{O}_{3}} \right]}{{{k}_{1}}^{'}\left[ {{O}_{2}} \right]+{{k}_{2}}\left[ {{O}_{3}} \right]}+\dfrac{{{k}_{2}}{{k}_{1}}{{\left[ {{O}_{3}} \right]}^{2}}}{{{k}_{1}}^{'}\left[ {{O}_{2}} \right]+{{k}_{2}}\left[ {{O}_{3}} \right]}\]
\[=\dfrac{2{{k}_{2}}{{k}_{1}}{{\left[ {{O}_{3}} \right]}^{2}}}{{{k}_{1}}^{'}\left[ {{O}_{2}} \right]+{{k}_{2}}\left[ {{O}_{3}} \right]}\]
It is provided in the question that the second step is relatively slower than the first step, therefore, we can make the approximation
\[{{k}_{2}}\left[ O \right]\left[ {{O}_{3}} \right]\ll {{k}_{1}}^{'}\left[ {{O}_{2}} \right]\left[ O \right],\,\,\,\,i.e.,\,\,\,\,{{k}_{2}}\left[ {{O}_{3}} \right]\ll {{k}_{1}}^{'}\left[ {{O}_{2}} \right]\]
Therefore, we get,
\[Rate=\dfrac{2{{k}_{2}}{{k}_{1}}{{\left[ {{O}_{3}} \right]}^{2}}}{{{k}_{1}}^{'}\left[ {{O}_{2}} \right]}=\dfrac{k{{\left[ {{O}_{3}} \right]}^{2}}}{\left[ {{O}_{2}} \right]}\]
where, \[k=\dfrac{2{{k}_{1}}{{k}_{2}}}{{{k}_{1}}^{'}}\]
Hence, we have proved that the mechanism is consistent with the given rate law.
Note: The negative sign before the differentiation indicates that there will be a decrease in the concentration and positive means an increase in concentration. As it happens in a chemical reaction, the reactants get consumed to form the products. Therefore, the sign convention.
Consider the following reaction:
\[2A+B\to C\]
Reaction rate can be given as
Reaction rate= \[\dfrac{decrease\text{ }in\text{ }concentration\text{ }of\text{ }reactants}{time}\]=\[\dfrac{increase\text{ }in\text{ }concentration\text{ }of\text{ }products}{time}\]
= \[-\dfrac{1}{2}\dfrac{d[A]}{dt}=-\dfrac{d[B]}{dt}=\dfrac{d[C]}{dt}\]
Complete step by step solution: In the case of fast mechanism, since it is at equilibrium:
Forward - Rate of decomposition of \[{{O}_{3}}={{k}_{1}}\left[ {{O}_{3}} \right]\]
Reverse - Rate of formation of \[{{O}_{3}}={{k}_{1}}^{'}\left[ {{O}_{2}} \right]\left[ O \right]\]
In the case of slow mechanism,
Forward - Rate of consumption of \[{{O}_{3}}={{k}_{2}}\left[ O \right]\left[ {{O}_{3}} \right]\]
The net rate of decomposition of \[{{O}_{3}}\] is given by
Rate= \[-\dfrac{d\left[ {{O}_{3}} \right]}{dt}\]= \[{{k}_{1}}\left[ {{O}_{3}} \right]-{{k}_{1}}^{'}\left[ {{O}_{2}} \right]\left[ O \right]+{{k}_{2}}\left[ O \right]\left[ {{O}_{3}} \right]\] (i)
Apply the steady-state approximation to the intermediate (O atom) and after rearranging,
\[{{k}_{1}}\left[ {{O}_{3}} \right]-{{k}_{1}}^{'}\left[ {{O}_{2}} \right]\left[ O \right]-{{k}_{2}}\left[ O \right]\left[ {{O}_{3}} \right]=0\]
\[{{k}_{1}}\left[ {{O}_{3}} \right]={{k}_{1}}^{'}\left[ {{O}_{2}} \right]\left[ O \right]+{{k}_{2}}\left[ O \right]\left[ {{O}_{3}} \right]\]
\[\left[ O \right]=\dfrac{{{k}_{1}}\left[ {{O}_{3}} \right]}{{{k}_{1}}^{'}\left[ {{O}_{2}} \right]+{{k}_{2}}\left[ {{O}_{3}} \right]}\] (ii)
From (1) and (2), we have,
\[Rate={{k}_{1}}\left[ {{O}_{3}} \right]-{{k}_{1}}^{'}\left[ {{O}_{2}} \right]\dfrac{{{k}_{1}}\left[ {{O}_{3}} \right]}{{{k}_{1}}^{'}\left[ {{O}_{2}} \right]+{{k}_{2}}\left[ {{O}_{3}} \right]}+{{k}_{2}}\dfrac{{{k}_{1}}\left[ {{O}_{3}} \right]}{{{k}_{1}}^{'}\left[ {{O}_{2}} \right]+{{k}_{2}}\left[ {{O}_{3}} \right]}\left[ {{O}_{3}} \right]\]
\[={{k}_{1}}\left[ {{O}_{3}} \right]-\dfrac{{{k}_{1}}^{'}\left[ {{O}_{2}} \right]{{k}_{1}}\left[ {{O}_{3}} \right]}{{{k}_{1}}^{'}\left[ {{O}_{2}} \right]+{{k}_{2}}\left[ {{O}_{3}} \right]}+\dfrac{{{k}_{2}}{{k}_{1}}{{\left[ {{O}_{3}} \right]}^{2}}}{{{k}_{1}}^{'}\left[ {{O}_{2}} \right]+{{k}_{2}}\left[ {{O}_{3}} \right]}\]
\[=\dfrac{2{{k}_{2}}{{k}_{1}}{{\left[ {{O}_{3}} \right]}^{2}}}{{{k}_{1}}^{'}\left[ {{O}_{2}} \right]+{{k}_{2}}\left[ {{O}_{3}} \right]}\]
It is provided in the question that the second step is relatively slower than the first step, therefore, we can make the approximation
\[{{k}_{2}}\left[ O \right]\left[ {{O}_{3}} \right]\ll {{k}_{1}}^{'}\left[ {{O}_{2}} \right]\left[ O \right],\,\,\,\,i.e.,\,\,\,\,{{k}_{2}}\left[ {{O}_{3}} \right]\ll {{k}_{1}}^{'}\left[ {{O}_{2}} \right]\]
Therefore, we get,
\[Rate=\dfrac{2{{k}_{2}}{{k}_{1}}{{\left[ {{O}_{3}} \right]}^{2}}}{{{k}_{1}}^{'}\left[ {{O}_{2}} \right]}=\dfrac{k{{\left[ {{O}_{3}} \right]}^{2}}}{\left[ {{O}_{2}} \right]}\]
where, \[k=\dfrac{2{{k}_{1}}{{k}_{2}}}{{{k}_{1}}^{'}}\]
Hence, we have proved that the mechanism is consistent with the given rate law.
Note: The negative sign before the differentiation indicates that there will be a decrease in the concentration and positive means an increase in concentration. As it happens in a chemical reaction, the reactants get consumed to form the products. Therefore, the sign convention.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Which one of the following is not a method of soil class 11 biology CBSE

What is the nature of force between two parallel conductors class 11 physics CBSE

Whiptails disease in cauliflower is noted due to deficiency class 11 biology CBSE

How many quintals are there in one metric ton A 10 class 11 physics CBSE

