
The gaseous decomposition of ozone, \[2{{O}_{3}}\to 3{{O}_{2}}\], obeys the rate law r =
\[-\dfrac{d\left[ {{O}_{3}} \right]}{dt}=\dfrac{k{{\left[ {{O}_{3}} \right]}^{2}}}{\left[ {{O}_{2}} \right]}\].
Show that the following mechanism is consistent with the above rate law:
\[\begin{align}
& {{O}_{3}}\overset{{{K}_{eq}}}{\mathop{\rightleftharpoons }}\,{{O}_{2}}+O(fast) \\
& O+{{O}_{3}}\xrightarrow{{{k}_{2}}}2{{O}_{2}}(slow) \\
\end{align}\]
Answer
583.2k+ views
Hint: The reaction rate is expressed as a derivative of the concentration of reactant A or product C, with respect to time, t.
Consider the following reaction:
\[2A+B\to C\]
Reaction rate can be given as
Reaction rate= \[\dfrac{decrease\text{ }in\text{ }concentration\text{ }of\text{ }reactants}{time}\]=\[\dfrac{increase\text{ }in\text{ }concentration\text{ }of\text{ }products}{time}\]
= \[-\dfrac{1}{2}\dfrac{d[A]}{dt}=-\dfrac{d[B]}{dt}=\dfrac{d[C]}{dt}\]
Complete step by step solution: In the case of fast mechanism, since it is at equilibrium:
Forward - Rate of decomposition of \[{{O}_{3}}={{k}_{1}}\left[ {{O}_{3}} \right]\]
Reverse - Rate of formation of \[{{O}_{3}}={{k}_{1}}^{'}\left[ {{O}_{2}} \right]\left[ O \right]\]
In the case of slow mechanism,
Forward - Rate of consumption of \[{{O}_{3}}={{k}_{2}}\left[ O \right]\left[ {{O}_{3}} \right]\]
The net rate of decomposition of \[{{O}_{3}}\] is given by
Rate= \[-\dfrac{d\left[ {{O}_{3}} \right]}{dt}\]= \[{{k}_{1}}\left[ {{O}_{3}} \right]-{{k}_{1}}^{'}\left[ {{O}_{2}} \right]\left[ O \right]+{{k}_{2}}\left[ O \right]\left[ {{O}_{3}} \right]\] (i)
Apply the steady-state approximation to the intermediate (O atom) and after rearranging,
\[{{k}_{1}}\left[ {{O}_{3}} \right]-{{k}_{1}}^{'}\left[ {{O}_{2}} \right]\left[ O \right]-{{k}_{2}}\left[ O \right]\left[ {{O}_{3}} \right]=0\]
\[{{k}_{1}}\left[ {{O}_{3}} \right]={{k}_{1}}^{'}\left[ {{O}_{2}} \right]\left[ O \right]+{{k}_{2}}\left[ O \right]\left[ {{O}_{3}} \right]\]
\[\left[ O \right]=\dfrac{{{k}_{1}}\left[ {{O}_{3}} \right]}{{{k}_{1}}^{'}\left[ {{O}_{2}} \right]+{{k}_{2}}\left[ {{O}_{3}} \right]}\] (ii)
From (1) and (2), we have,
\[Rate={{k}_{1}}\left[ {{O}_{3}} \right]-{{k}_{1}}^{'}\left[ {{O}_{2}} \right]\dfrac{{{k}_{1}}\left[ {{O}_{3}} \right]}{{{k}_{1}}^{'}\left[ {{O}_{2}} \right]+{{k}_{2}}\left[ {{O}_{3}} \right]}+{{k}_{2}}\dfrac{{{k}_{1}}\left[ {{O}_{3}} \right]}{{{k}_{1}}^{'}\left[ {{O}_{2}} \right]+{{k}_{2}}\left[ {{O}_{3}} \right]}\left[ {{O}_{3}} \right]\]
\[={{k}_{1}}\left[ {{O}_{3}} \right]-\dfrac{{{k}_{1}}^{'}\left[ {{O}_{2}} \right]{{k}_{1}}\left[ {{O}_{3}} \right]}{{{k}_{1}}^{'}\left[ {{O}_{2}} \right]+{{k}_{2}}\left[ {{O}_{3}} \right]}+\dfrac{{{k}_{2}}{{k}_{1}}{{\left[ {{O}_{3}} \right]}^{2}}}{{{k}_{1}}^{'}\left[ {{O}_{2}} \right]+{{k}_{2}}\left[ {{O}_{3}} \right]}\]
\[=\dfrac{2{{k}_{2}}{{k}_{1}}{{\left[ {{O}_{3}} \right]}^{2}}}{{{k}_{1}}^{'}\left[ {{O}_{2}} \right]+{{k}_{2}}\left[ {{O}_{3}} \right]}\]
It is provided in the question that the second step is relatively slower than the first step, therefore, we can make the approximation
\[{{k}_{2}}\left[ O \right]\left[ {{O}_{3}} \right]\ll {{k}_{1}}^{'}\left[ {{O}_{2}} \right]\left[ O \right],\,\,\,\,i.e.,\,\,\,\,{{k}_{2}}\left[ {{O}_{3}} \right]\ll {{k}_{1}}^{'}\left[ {{O}_{2}} \right]\]
Therefore, we get,
\[Rate=\dfrac{2{{k}_{2}}{{k}_{1}}{{\left[ {{O}_{3}} \right]}^{2}}}{{{k}_{1}}^{'}\left[ {{O}_{2}} \right]}=\dfrac{k{{\left[ {{O}_{3}} \right]}^{2}}}{\left[ {{O}_{2}} \right]}\]
where, \[k=\dfrac{2{{k}_{1}}{{k}_{2}}}{{{k}_{1}}^{'}}\]
Hence, we have proved that the mechanism is consistent with the given rate law.
Note: The negative sign before the differentiation indicates that there will be a decrease in the concentration and positive means an increase in concentration. As it happens in a chemical reaction, the reactants get consumed to form the products. Therefore, the sign convention.
Consider the following reaction:
\[2A+B\to C\]
Reaction rate can be given as
Reaction rate= \[\dfrac{decrease\text{ }in\text{ }concentration\text{ }of\text{ }reactants}{time}\]=\[\dfrac{increase\text{ }in\text{ }concentration\text{ }of\text{ }products}{time}\]
= \[-\dfrac{1}{2}\dfrac{d[A]}{dt}=-\dfrac{d[B]}{dt}=\dfrac{d[C]}{dt}\]
Complete step by step solution: In the case of fast mechanism, since it is at equilibrium:
Forward - Rate of decomposition of \[{{O}_{3}}={{k}_{1}}\left[ {{O}_{3}} \right]\]
Reverse - Rate of formation of \[{{O}_{3}}={{k}_{1}}^{'}\left[ {{O}_{2}} \right]\left[ O \right]\]
In the case of slow mechanism,
Forward - Rate of consumption of \[{{O}_{3}}={{k}_{2}}\left[ O \right]\left[ {{O}_{3}} \right]\]
The net rate of decomposition of \[{{O}_{3}}\] is given by
Rate= \[-\dfrac{d\left[ {{O}_{3}} \right]}{dt}\]= \[{{k}_{1}}\left[ {{O}_{3}} \right]-{{k}_{1}}^{'}\left[ {{O}_{2}} \right]\left[ O \right]+{{k}_{2}}\left[ O \right]\left[ {{O}_{3}} \right]\] (i)
Apply the steady-state approximation to the intermediate (O atom) and after rearranging,
\[{{k}_{1}}\left[ {{O}_{3}} \right]-{{k}_{1}}^{'}\left[ {{O}_{2}} \right]\left[ O \right]-{{k}_{2}}\left[ O \right]\left[ {{O}_{3}} \right]=0\]
\[{{k}_{1}}\left[ {{O}_{3}} \right]={{k}_{1}}^{'}\left[ {{O}_{2}} \right]\left[ O \right]+{{k}_{2}}\left[ O \right]\left[ {{O}_{3}} \right]\]
\[\left[ O \right]=\dfrac{{{k}_{1}}\left[ {{O}_{3}} \right]}{{{k}_{1}}^{'}\left[ {{O}_{2}} \right]+{{k}_{2}}\left[ {{O}_{3}} \right]}\] (ii)
From (1) and (2), we have,
\[Rate={{k}_{1}}\left[ {{O}_{3}} \right]-{{k}_{1}}^{'}\left[ {{O}_{2}} \right]\dfrac{{{k}_{1}}\left[ {{O}_{3}} \right]}{{{k}_{1}}^{'}\left[ {{O}_{2}} \right]+{{k}_{2}}\left[ {{O}_{3}} \right]}+{{k}_{2}}\dfrac{{{k}_{1}}\left[ {{O}_{3}} \right]}{{{k}_{1}}^{'}\left[ {{O}_{2}} \right]+{{k}_{2}}\left[ {{O}_{3}} \right]}\left[ {{O}_{3}} \right]\]
\[={{k}_{1}}\left[ {{O}_{3}} \right]-\dfrac{{{k}_{1}}^{'}\left[ {{O}_{2}} \right]{{k}_{1}}\left[ {{O}_{3}} \right]}{{{k}_{1}}^{'}\left[ {{O}_{2}} \right]+{{k}_{2}}\left[ {{O}_{3}} \right]}+\dfrac{{{k}_{2}}{{k}_{1}}{{\left[ {{O}_{3}} \right]}^{2}}}{{{k}_{1}}^{'}\left[ {{O}_{2}} \right]+{{k}_{2}}\left[ {{O}_{3}} \right]}\]
\[=\dfrac{2{{k}_{2}}{{k}_{1}}{{\left[ {{O}_{3}} \right]}^{2}}}{{{k}_{1}}^{'}\left[ {{O}_{2}} \right]+{{k}_{2}}\left[ {{O}_{3}} \right]}\]
It is provided in the question that the second step is relatively slower than the first step, therefore, we can make the approximation
\[{{k}_{2}}\left[ O \right]\left[ {{O}_{3}} \right]\ll {{k}_{1}}^{'}\left[ {{O}_{2}} \right]\left[ O \right],\,\,\,\,i.e.,\,\,\,\,{{k}_{2}}\left[ {{O}_{3}} \right]\ll {{k}_{1}}^{'}\left[ {{O}_{2}} \right]\]
Therefore, we get,
\[Rate=\dfrac{2{{k}_{2}}{{k}_{1}}{{\left[ {{O}_{3}} \right]}^{2}}}{{{k}_{1}}^{'}\left[ {{O}_{2}} \right]}=\dfrac{k{{\left[ {{O}_{3}} \right]}^{2}}}{\left[ {{O}_{2}} \right]}\]
where, \[k=\dfrac{2{{k}_{1}}{{k}_{2}}}{{{k}_{1}}^{'}}\]
Hence, we have proved that the mechanism is consistent with the given rate law.
Note: The negative sign before the differentiation indicates that there will be a decrease in the concentration and positive means an increase in concentration. As it happens in a chemical reaction, the reactants get consumed to form the products. Therefore, the sign convention.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

