
The function\[f\left( x \right)=\log \left( \dfrac{1+x}{1-x} \right)\]satisfy the equation
(a). \[f\left( x+2 \right)-2f\left( x+1 \right)+f\left( x \right)=0\]
(b). \[f\left( x \right)+f\left( x+1 \right)=f\left\{ x\left( x+1 \right) \right\}\]
(c). \[f\left( x \right)+f\left( y \right)=f\left( \dfrac{x+y}{1+xy} \right)\]
(d). \[f\left( x+y \right)=f\left( x \right)f\left( y \right)\]
Answer
612k+ views
Hint: Calculate values of all the required terms of each option and verify that option is correct or not. Use the property of algorithm function, while verifying the options. Use following property:-
\[{{\log }_{m}}a-{{\log }_{m}}b={{\log }_{m}}\left( \dfrac{a}{b} \right)\]
\[{{\log }_{m}}a+{{\log }_{m}}b={{\log }_{m}}\left( ab \right)\]
Complete step-by-step answer:
We are given function \[f\left( x \right)\]as
\[f\left( x \right)=\log \left( \dfrac{1+x}{1-x} \right)\] \[\to (1)\]
As all the given options are different to each other, so, we need to calculate the values of all the given options to verify whether it is correct or not.
Option (A) \[f\left( x+2 \right)-2f\left( x+1 \right)+f\left( x \right)=0\]
So, L.H.S is given as
\[LHS=f\left( x+2 \right)-2f\left( x+1 \right)+f\left( x \right)\]
So, the value of\[f\left( n+1 \right),f\left( x+2 \right)\]can be calculated from equation (1) by replacing \[x\] by \[x+1,x+2\] respectively.
So, L.H.S is given as
\[LHS=\log \left( \dfrac{1+\left( x+2 \right)}{1-\left( x+2 \right)} \right)-2\log \left( \dfrac{1+\left( x+1 \right)}{1-\left( x+1 \right)} \right)+\log \left( \dfrac{1+x}{1-x} \right)\]
We know that property of logarithm functions are given as
\[{{\log }_{c}}a+{{\log }_{c}}b={{\log }_{c}}ab\] \[\to (2)\]
\[\log {{m}^{n}}=n\log m\] \[\to (3)\]
So, we get the value of L.H.S. as
\[LHS=\log \left( \dfrac{x+3}{-x-1} \right)-\log {{\left( \dfrac{x+2}{-x} \right)}^{2}}+\log \left( \dfrac{1+x}{1-x} \right)\]
Now, using the property (2), we get L.H.S as
\[LHS=\log \left( \dfrac{x+3}{-x-1} \right)\left( \dfrac{1+x}{1-x} \right)-\log {{\left( \dfrac{x+2}{-x} \right)}^{2}}\]
\[LHS=\log \left( \dfrac{\left( x+3 \right)\left( x+1 \right)}{\left( -1 \right)\left( x+1 \right)\left( 1-x \right)} \right)-\log {{\left( \dfrac{x+2}{-x} \right)}^{2}}\]
\[LHS=\log \left( \dfrac{\left( x+3 \right)}{-\left( 1-x \right)} \right)-\log {{\left( \dfrac{x+2}{-x} \right)}^{2}}\]
We know the property of logarithm function
\[{{\log }_{a}}b-{{\log }_{a}}c={{\log }_{a}}\dfrac{b}{c}\]
So, we get L.H.S. as
\[LHS=\log \left( \dfrac{\dfrac{\left( x+3 \right)}{\left( 1-x \right)}}{{{\left( \dfrac{\left( x+2 \right)}{-2} \right)}^{2}}} \right)\]
\[LHS=\log \left( \left( \dfrac{x+3}{1-x} \right)\times \dfrac{{{x}^{2}}}{{{\left( x+2 \right)}^{2}}} \right)\]
As, above expression is not independent of \['x'\], it means L.H.S. will never be 0.
So, option (a) is not true.
Option (b):- \[f\left( x \right)+f\left( x+1 \right)=f\left\{ x\left( x+1 \right) \right\}\]
So, L.H.S. of this equation can be given as
\[f\left( x \right)+f\left( x+1 \right)=f\left( \dfrac{1+x}{1-x} \right)+\log \left( \dfrac{1+x+1}{1-\left( 1+x \right)} \right)\]
\[L.H.S.=\log \left( \dfrac{1+x}{\left( 1-x \right)} \right)+\log \left( \dfrac{2+x}{-x} \right)\]
Appling the property given in equation (2), we get
\[\begin{align}
& L.H.S.=\log \left( \dfrac{\left( 1+x \right)\left( 2+x \right)}{\left( 1-x \right)\left( -x \right)} \right) \\
& \\
& L.H.S.=\log \left( \dfrac{{{x}^{2}}+3x+2}{{{x}^{2}}-x} \right) \\
\end{align}\]
R.H.S can be calculated using equation (1) as
\[\begin{align}
& R.H.S.=\log \left( \dfrac{1+x\left( x-1 \right)}{1-x\left( x-1 \right)} \right) \\
& \\
& R.H.S.=\log \left( \dfrac{{{x}^{2}}-x+1}{-{{x}^{2}}+x+1} \right) \\
\end{align}\]
As,\[L.H.S.\ne R.H.S.\]
So, option (b) is not correct.
Option (d):- \[f\left( x+y \right)=f\left( x \right)f\left( y \right)\]
So, we get value of L.H.S. that is \[f\left( x+y \right)\]from the equation (1) as
\[\begin{align}
& f\left( x+y \right)=\log \left( \dfrac{1+\left( x+y \right)}{1-\left( x+y \right)} \right) \\
& \\
& f\left( x+y \right)=\log \left( \dfrac{x+y+1}{-x-y+1} \right) \\
\end{align}\]
R.H.S. of the expression can be calculated as
\[R.H.S.=f\left( x \right)f\left( y \right)=\log \left( \dfrac{1+x}{1-x} \right)+\log \left( \dfrac{1+y}{1-y} \right)\]
Use the property given in equation (2), we get
\[\begin{align}
& R.H.S.=\log \left( \dfrac{\left( 1+x \right)\left( 1+y \right)}{\left( 1-x \right)\left( 1-y \right)} \right) \\
& \\
& R.H.S.=\log \left( \dfrac{x+y+xy+1}{xy+1-x-y} \right) \\
\end{align}\]
Hence, \[L.H.S.\ne R.H.S.\]
So, this option is also wrong.
Option (c):- \[f\left( x \right)+f\left( y \right)=f\left( \dfrac{x+y}{1+xy} \right)\]
L.H.S. of the given expression is given as
\[f\left( x \right)f\left( y \right)=\log \left( \dfrac{1+x}{1-x} \right)+\log \left( \dfrac{1+y}{1-y} \right)\]
Now, use property (2) and hence, we get
\[\begin{align}
& f\left( x \right)f\left( y \right)=\log \left( \dfrac{\left( 1+x \right)\left( 1+y \right)}{\left( 1-x \right)\left( 1-y \right)} \right) \\
& \\
& f\left( x \right)f\left( y \right)=\log \left( \dfrac{x+y+xy+1}{xy+1-x-y} \right) \\
\end{align}\]
R.H.S. of the expression can be calculated as
\[\begin{align}
& R.H.S.=f\left( \dfrac{x+y}{1+xy} \right)=\log \left( \dfrac{1+\dfrac{x+y}{1+xy}}{1-\dfrac{x+y}{1+xy}} \right) \\
& \\
& R.H.S.=\log \left( \dfrac{1+xy+x+y}{1+xy-x-y} \right) \\
\end{align}\]
Hence,\[L.H.S.=R.H.S.\], So, the given option is the correct answer to the problem.
Note: Calculation is an important side of this question, as we need to verify all four options, given to the problem. Don’t confuse the property of logarithms. One may use identity of \[{{\log }_{c}}\left( \dfrac{a}{b} \right)\] as \[{{\log }_{c}}a+{{\log }_{c}}b\], which is wrong. Correct property of logarithm functions are given as
\[\begin{align}
& {{\log }_{c}}\left( \dfrac{a}{b} \right)={{\log }_{c}}a-{{\log }_{c}}b \\
& \\
& {{\log }_{c}}ab={{\log }_{c}}a+{{\log }_{c}}b \\
& \\
& {{\log }_{c}}{{m}^{n}}=n{{\log }_{c}}m\text{ } \\
\end{align}\]
\[{{\log }_{m}}a-{{\log }_{m}}b={{\log }_{m}}\left( \dfrac{a}{b} \right)\]
\[{{\log }_{m}}a+{{\log }_{m}}b={{\log }_{m}}\left( ab \right)\]
Complete step-by-step answer:
We are given function \[f\left( x \right)\]as
\[f\left( x \right)=\log \left( \dfrac{1+x}{1-x} \right)\] \[\to (1)\]
As all the given options are different to each other, so, we need to calculate the values of all the given options to verify whether it is correct or not.
Option (A) \[f\left( x+2 \right)-2f\left( x+1 \right)+f\left( x \right)=0\]
So, L.H.S is given as
\[LHS=f\left( x+2 \right)-2f\left( x+1 \right)+f\left( x \right)\]
So, the value of\[f\left( n+1 \right),f\left( x+2 \right)\]can be calculated from equation (1) by replacing \[x\] by \[x+1,x+2\] respectively.
So, L.H.S is given as
\[LHS=\log \left( \dfrac{1+\left( x+2 \right)}{1-\left( x+2 \right)} \right)-2\log \left( \dfrac{1+\left( x+1 \right)}{1-\left( x+1 \right)} \right)+\log \left( \dfrac{1+x}{1-x} \right)\]
We know that property of logarithm functions are given as
\[{{\log }_{c}}a+{{\log }_{c}}b={{\log }_{c}}ab\] \[\to (2)\]
\[\log {{m}^{n}}=n\log m\] \[\to (3)\]
So, we get the value of L.H.S. as
\[LHS=\log \left( \dfrac{x+3}{-x-1} \right)-\log {{\left( \dfrac{x+2}{-x} \right)}^{2}}+\log \left( \dfrac{1+x}{1-x} \right)\]
Now, using the property (2), we get L.H.S as
\[LHS=\log \left( \dfrac{x+3}{-x-1} \right)\left( \dfrac{1+x}{1-x} \right)-\log {{\left( \dfrac{x+2}{-x} \right)}^{2}}\]
\[LHS=\log \left( \dfrac{\left( x+3 \right)\left( x+1 \right)}{\left( -1 \right)\left( x+1 \right)\left( 1-x \right)} \right)-\log {{\left( \dfrac{x+2}{-x} \right)}^{2}}\]
\[LHS=\log \left( \dfrac{\left( x+3 \right)}{-\left( 1-x \right)} \right)-\log {{\left( \dfrac{x+2}{-x} \right)}^{2}}\]
We know the property of logarithm function
\[{{\log }_{a}}b-{{\log }_{a}}c={{\log }_{a}}\dfrac{b}{c}\]
So, we get L.H.S. as
\[LHS=\log \left( \dfrac{\dfrac{\left( x+3 \right)}{\left( 1-x \right)}}{{{\left( \dfrac{\left( x+2 \right)}{-2} \right)}^{2}}} \right)\]
\[LHS=\log \left( \left( \dfrac{x+3}{1-x} \right)\times \dfrac{{{x}^{2}}}{{{\left( x+2 \right)}^{2}}} \right)\]
As, above expression is not independent of \['x'\], it means L.H.S. will never be 0.
So, option (a) is not true.
Option (b):- \[f\left( x \right)+f\left( x+1 \right)=f\left\{ x\left( x+1 \right) \right\}\]
So, L.H.S. of this equation can be given as
\[f\left( x \right)+f\left( x+1 \right)=f\left( \dfrac{1+x}{1-x} \right)+\log \left( \dfrac{1+x+1}{1-\left( 1+x \right)} \right)\]
\[L.H.S.=\log \left( \dfrac{1+x}{\left( 1-x \right)} \right)+\log \left( \dfrac{2+x}{-x} \right)\]
Appling the property given in equation (2), we get
\[\begin{align}
& L.H.S.=\log \left( \dfrac{\left( 1+x \right)\left( 2+x \right)}{\left( 1-x \right)\left( -x \right)} \right) \\
& \\
& L.H.S.=\log \left( \dfrac{{{x}^{2}}+3x+2}{{{x}^{2}}-x} \right) \\
\end{align}\]
R.H.S can be calculated using equation (1) as
\[\begin{align}
& R.H.S.=\log \left( \dfrac{1+x\left( x-1 \right)}{1-x\left( x-1 \right)} \right) \\
& \\
& R.H.S.=\log \left( \dfrac{{{x}^{2}}-x+1}{-{{x}^{2}}+x+1} \right) \\
\end{align}\]
As,\[L.H.S.\ne R.H.S.\]
So, option (b) is not correct.
Option (d):- \[f\left( x+y \right)=f\left( x \right)f\left( y \right)\]
So, we get value of L.H.S. that is \[f\left( x+y \right)\]from the equation (1) as
\[\begin{align}
& f\left( x+y \right)=\log \left( \dfrac{1+\left( x+y \right)}{1-\left( x+y \right)} \right) \\
& \\
& f\left( x+y \right)=\log \left( \dfrac{x+y+1}{-x-y+1} \right) \\
\end{align}\]
R.H.S. of the expression can be calculated as
\[R.H.S.=f\left( x \right)f\left( y \right)=\log \left( \dfrac{1+x}{1-x} \right)+\log \left( \dfrac{1+y}{1-y} \right)\]
Use the property given in equation (2), we get
\[\begin{align}
& R.H.S.=\log \left( \dfrac{\left( 1+x \right)\left( 1+y \right)}{\left( 1-x \right)\left( 1-y \right)} \right) \\
& \\
& R.H.S.=\log \left( \dfrac{x+y+xy+1}{xy+1-x-y} \right) \\
\end{align}\]
Hence, \[L.H.S.\ne R.H.S.\]
So, this option is also wrong.
Option (c):- \[f\left( x \right)+f\left( y \right)=f\left( \dfrac{x+y}{1+xy} \right)\]
L.H.S. of the given expression is given as
\[f\left( x \right)f\left( y \right)=\log \left( \dfrac{1+x}{1-x} \right)+\log \left( \dfrac{1+y}{1-y} \right)\]
Now, use property (2) and hence, we get
\[\begin{align}
& f\left( x \right)f\left( y \right)=\log \left( \dfrac{\left( 1+x \right)\left( 1+y \right)}{\left( 1-x \right)\left( 1-y \right)} \right) \\
& \\
& f\left( x \right)f\left( y \right)=\log \left( \dfrac{x+y+xy+1}{xy+1-x-y} \right) \\
\end{align}\]
R.H.S. of the expression can be calculated as
\[\begin{align}
& R.H.S.=f\left( \dfrac{x+y}{1+xy} \right)=\log \left( \dfrac{1+\dfrac{x+y}{1+xy}}{1-\dfrac{x+y}{1+xy}} \right) \\
& \\
& R.H.S.=\log \left( \dfrac{1+xy+x+y}{1+xy-x-y} \right) \\
\end{align}\]
Hence,\[L.H.S.=R.H.S.\], So, the given option is the correct answer to the problem.
Note: Calculation is an important side of this question, as we need to verify all four options, given to the problem. Don’t confuse the property of logarithms. One may use identity of \[{{\log }_{c}}\left( \dfrac{a}{b} \right)\] as \[{{\log }_{c}}a+{{\log }_{c}}b\], which is wrong. Correct property of logarithm functions are given as
\[\begin{align}
& {{\log }_{c}}\left( \dfrac{a}{b} \right)={{\log }_{c}}a-{{\log }_{c}}b \\
& \\
& {{\log }_{c}}ab={{\log }_{c}}a+{{\log }_{c}}b \\
& \\
& {{\log }_{c}}{{m}^{n}}=n{{\log }_{c}}m\text{ } \\
\end{align}\]
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

