
The function $ {x^x} $ decreases in the interval-
a) $ (0,e) $
b) $ (0,1) $
c) $ (0,\dfrac{1}{e}) $
d)None of the above
Answer
574.5k+ views
Hint: We will be using the derivative technique to solve the given problem. The property of a function to be increasing is that the derivative of that function should be strictly greater than zero and to be decreasing it should be strictly less than zero. We will also be using the logarithmic function to find the derivative of the given function as it is a function involving power of a variable.
Formula used:
1)If in an a mathematical equation $ a = b $ , then
$ a = b \Leftrightarrow \log a = \log b $
2) $ \log ({a^b}) = b\log a $
3) $ \dfrac{d}{{dx}}\log x = \dfrac{1}{x} $
4) $ \log e = 1 $
Complete step by step solution:
The given function is $ {x^x} $ .
The given function is defined on the positive real line.
Let $ y = {x^x} $
Applying logarithmic function on both sides we get:
$ \log y = \log {x^x} $
$ \Rightarrow \log y = x\log x $
Differentiating the above equation with respect to $ x $ we get:
$ \dfrac{1}{y}y' = x\left( {\dfrac{1}{x}} \right) + \log x $
$ \Rightarrow y' = y(1 + \log x) $
$ \Rightarrow y' = {x^x} + {x^x}\log x $
For $ y $ to be an decreasing function $ y' < 0 $
$ \Rightarrow y' < 0 \Rightarrow {x^x} + {x^x}\log x < 0 $
$ \Rightarrow {x^x}(1 + \log x) < 0 $
$ \Rightarrow y(1 + \log x) < 0 $
The given function $ y $ is defined only in the positive real axis so its value is always positive.
Thus, the only possibility we have is:
$ 1 + \log x < 0 $
$ \Rightarrow \log e + \log x < 0 $
$ \Rightarrow \log x < - \log e $ [Taking $ \log e $ to the right side of the inequality]
$ \Rightarrow \log x < \log \dfrac{1}{e} $ [we have $ - \log e = \log {e^{ - 1}} = \log \dfrac{1}{e} $ ]
Using the properties of logarithmic function we can write:
$ x < \dfrac{1}{e} $
Since, in the given case $ x > 0 $ . So we have the inequality:
$ 0 < x < \dfrac{1}{e} $
Thus, $ x \in (0,\dfrac{1}{e}) $ .
Therefore, the function decreases in the interval $ (0,\dfrac{1}{e}) $
So, the correct answer is “Option C”.
Note: The given function $ {x^x} $ is defined only for positive numbers so make sure you solve the problem on the basis of this. While finding derivatives of function like these use the logarithmic function, as it makes differentiation easier.
Formula used:
1)If in an a mathematical equation $ a = b $ , then
$ a = b \Leftrightarrow \log a = \log b $
2) $ \log ({a^b}) = b\log a $
3) $ \dfrac{d}{{dx}}\log x = \dfrac{1}{x} $
4) $ \log e = 1 $
Complete step by step solution:
The given function is $ {x^x} $ .
The given function is defined on the positive real line.
Let $ y = {x^x} $
Applying logarithmic function on both sides we get:
$ \log y = \log {x^x} $
$ \Rightarrow \log y = x\log x $
Differentiating the above equation with respect to $ x $ we get:
$ \dfrac{1}{y}y' = x\left( {\dfrac{1}{x}} \right) + \log x $
$ \Rightarrow y' = y(1 + \log x) $
$ \Rightarrow y' = {x^x} + {x^x}\log x $
For $ y $ to be an decreasing function $ y' < 0 $
$ \Rightarrow y' < 0 \Rightarrow {x^x} + {x^x}\log x < 0 $
$ \Rightarrow {x^x}(1 + \log x) < 0 $
$ \Rightarrow y(1 + \log x) < 0 $
The given function $ y $ is defined only in the positive real axis so its value is always positive.
Thus, the only possibility we have is:
$ 1 + \log x < 0 $
$ \Rightarrow \log e + \log x < 0 $
$ \Rightarrow \log x < - \log e $ [Taking $ \log e $ to the right side of the inequality]
$ \Rightarrow \log x < \log \dfrac{1}{e} $ [we have $ - \log e = \log {e^{ - 1}} = \log \dfrac{1}{e} $ ]
Using the properties of logarithmic function we can write:
$ x < \dfrac{1}{e} $
Since, in the given case $ x > 0 $ . So we have the inequality:
$ 0 < x < \dfrac{1}{e} $
Thus, $ x \in (0,\dfrac{1}{e}) $ .
Therefore, the function decreases in the interval $ (0,\dfrac{1}{e}) $
So, the correct answer is “Option C”.
Note: The given function $ {x^x} $ is defined only for positive numbers so make sure you solve the problem on the basis of this. While finding derivatives of function like these use the logarithmic function, as it makes differentiation easier.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

