
The function \[f\left( x \right)={{x}^{\ln \left( \ln x \right)}}\] has,
(a) local minimum at \[x=\sqrt[e]{e}\]
(b) local maximum at \[x={{e}^{e}}\]
(c) local minimum at \[x=\sqrt[e+1]{e}\]
(d) local maximum at \[x=\dfrac{1}{{{e}^{e}}}\]
Answer
568.5k+ views
Hint: Write the given function in terms of exponential function by first taking log function both sides and then again converting back in f (x) by power of ‘e’ conversion formula. Now, differentiate f (x) and substitute it equal to zero. Find the values of x. Again, differentiate f’ (x) to find f’’ (x) and substitute the value of x found earlier in f’’ (x). If f’’ (x) is positive then the value of ‘x’ will be a point of minima and if f’’ (x) is negative then the value of ‘x’ will be a point of maxima.
Complete answer:
We have been provided with the function, \[f\left( x \right)={{x}^{\ln \left( \ln x \right)}}\].
Taking natural log ‘ln’ both sides, we get,
\[\Rightarrow \ln f\left( x \right)=\ln \left[ {{x}^{\ln \left( \ln x \right)}} \right]\]
Using the property: - \[\ln {{x}^{a}}=a\ln x\], we get,
\[\Rightarrow \ln f\left( x \right)=\ln \left( \ln x \right)\times \ln x\]
This can be written as,
\[\Rightarrow f\left( x \right)={{e}^{\ln \left( \ln x \right)\times \ln x}}\]
Differentiating the above function using chain rule, we get,
\[\begin{align}
& \Rightarrow f'\left( x \right)=\dfrac{d}{dx}\left[ {{e}^{\ln \left( \ln x \right)\times \ln x}} \right] \\
& \Rightarrow f'\left( x \right)=\dfrac{d\left[ {{e}^{\ln \left( \ln x \right)\times \ln x}} \right]}{d\left[ \ln \left( \ln x \right)\times \ln x \right]}\times \dfrac{d\left[ \ln \left( \ln x \right)\times \ln x \right]}{dx} \\
& \Rightarrow f'\left( x \right)=\left( {{e}^{\ln \left( \ln x \right)\times \ln x}} \right)\times \left[ \ln x.\dfrac{d\ln \left( \ln x \right)}{dx}+\ln \left( \ln x \right).\dfrac{d\left[ \ln x \right]}{dx} \right] \\
& \Rightarrow f'\left( x \right)=f\left( x \right)\times \left[ \ln x\times \dfrac{1}{\ln x}\times \dfrac{1}{x}+\ln \left( \ln x \right)\times \dfrac{1}{x} \right] \\
\end{align}\]
\[\Rightarrow f'\left( x \right)=f\left( x \right)\times \left[ \dfrac{1+\ln \left( \ln x \right)}{x} \right]\] - (1)
Substituting f’ (x) = 0, we get,
\[\begin{align}
& \Rightarrow f\left( x \right)\times \left[ \dfrac{1+\ln \left( \ln x \right)}{x} \right]=0 \\
& \Rightarrow f\left( x \right)\times \left[ 1+\ln \left( \ln x \right) \right]=0 \\
\end{align}\]
Since, f (x) is an exponential function, therefore it cannot be 0 or negative. Therefore,
\[\begin{align}
& \Rightarrow 1+\ln \left( \ln x \right)=0 \\
& \Rightarrow \ln \left( \ln x \right)=-1 \\
& \Rightarrow \ln x={{e}^{-1}} \\
& \Rightarrow \ln x=\dfrac{1}{e} \\
& \Rightarrow x={{e}^{\dfrac{1}{e}}} \\
\end{align}\]
So, we have only one value of x for which f’ (x) = 0. So, let us check if this x is a point of maxima or minima.
Now, differentiating f’ (x), we get,
\[\begin{align}
& \Rightarrow f''\left( x \right)=f\left( x \right)\times d\left[ \dfrac{1+\ln \left( \ln x \right)}{x} \right]+\left[ \dfrac{1+\ln \left( \ln x \right)}{x} \right]\times \dfrac{d\left[ f\left( x \right) \right]}{dx} \\
& \Rightarrow f''\left( x \right)=f\left( x \right)\times \left[ \dfrac{\left( x\times \dfrac{1}{\ln x}\times \dfrac{1}{x} \right)-\left[ \left( 1+\ln \left( \ln x \right) \right) \right]\times 1}{{{x}^{2}}} \right]+\left[ \dfrac{1+\ln \left( \ln x \right)}{x} \right]\times f'\left( x \right) \\
& \Rightarrow f''\left( x \right)=\dfrac{f\left( x \right)}{{{x}^{2}}}\left[ \dfrac{1}{\ln x}-\left( 1+\ln \left( \ln x \right) \right) \right]+\left[ \dfrac{1+\ln \left( \ln x \right)}{x} \right]\times f'\left( x \right) \\
\end{align}\]
Using equation (1), we can write f’’ (x) as: -
\[\begin{align}
& \Rightarrow f''\left( x \right)=\dfrac{f\left( x \right)}{{{x}^{2}}}{{\left[ \dfrac{1}{\ln x}-\left( 1+\ln \left( \ln x \right) \right)+\left[ \dfrac{\left[ 1+\ln \left( \ln x \right) \right]}{x} \right] \right]}^{2}}f\left( x \right) \\
& \Rightarrow f''\left( x \right)=\dfrac{f\left( x \right)}{{{x}^{2}}}\left[ \dfrac{1}{\ln x}-\left( 1+\ln \left( \ln x \right) \right)+{{\left[ 1+\ln \left( \ln x \right) \right]}^{2}} \right] \\
\end{align}\]
Now, at \[x={{e}^{\dfrac{1}{e}}}\], we have,
\[\begin{align}
& \Rightarrow f''\left( x \right)=f''\left( {{e}^{\dfrac{1}{e}}} \right)=\dfrac{f\left( {{e}^{\dfrac{1}{e}}} \right)}{{{\left( {{e}^{\dfrac{1}{e}}} \right)}^{2}}}\left[ \dfrac{1}{\ln {{e}^{\dfrac{1}{e}}}}-\left( 1+\ln \left( \ln {{e}^{\dfrac{1}{e}}} \right) \right)+{{\left[ 1+\ln \left( \ln {{e}^{\dfrac{1}{e}}} \right) \right]}^{2}} \right] \\
& \Rightarrow f''\left( x \right)=f''\left( {{e}^{\dfrac{1}{e}}} \right)=\dfrac{f\left( {{e}^{\dfrac{1}{e}}} \right)}{{{e}^{\dfrac{2}{e}}}}\left[ \dfrac{1}{\dfrac{1}{e}}-\left( 1+\ln \dfrac{1}{e} \right)+{{\left[ 1+\ln \dfrac{1}{e} \right]}^{2}} \right] \\
& \Rightarrow f''\left( x \right)=f''\left( {{e}^{\dfrac{1}{e}}} \right)=\dfrac{f\left( {{e}^{\dfrac{1}{e}}} \right)}{{{e}^{\dfrac{2}{e}}}}\left[ e-\left( 1+\left( -1 \right) \right)+{{\left( 1+\left( -1 \right) \right)}^{2}} \right] \\
& \Rightarrow f''\left( x \right)=f''\left( {{e}^{\dfrac{1}{e}}} \right)=\dfrac{f\left( {{e}^{\dfrac{1}{e}}} \right)}{{{e}^{\dfrac{2}{e}}}}\times e \\
\end{align}\]
Since, all the terms in the above expression are exponential functions, therefor they cannot be negative. Hence, f’’ (x) at \[x={{e}^{\dfrac{1}{e}}}\] will always be positive.
\[\Rightarrow f''\left( {{e}^{\dfrac{1}{e}}} \right)>0\]
Therefore, \[x={{e}^{\dfrac{1}{e}}}\] is a point of minima. Now, \[x={{e}^{\dfrac{1}{e}}}\] can be written as \[x=\sqrt[e]{e}\].
Hence, option (a) is the correct answer.
Note:
One may note that we can apply the first derivative test, instead of the second derivative test to find the correct option. In the first derivative test we will substitute f’ (x) = 0 to find the value of x. Now, we will put this value of x on the number line, if sign of f (x) changes from negative to positive then ‘x’ will be a point of minima and if sign of f (x) changes from positive to negative then ‘x’ will be a point of maxima.
Complete answer:
We have been provided with the function, \[f\left( x \right)={{x}^{\ln \left( \ln x \right)}}\].
Taking natural log ‘ln’ both sides, we get,
\[\Rightarrow \ln f\left( x \right)=\ln \left[ {{x}^{\ln \left( \ln x \right)}} \right]\]
Using the property: - \[\ln {{x}^{a}}=a\ln x\], we get,
\[\Rightarrow \ln f\left( x \right)=\ln \left( \ln x \right)\times \ln x\]
This can be written as,
\[\Rightarrow f\left( x \right)={{e}^{\ln \left( \ln x \right)\times \ln x}}\]
Differentiating the above function using chain rule, we get,
\[\begin{align}
& \Rightarrow f'\left( x \right)=\dfrac{d}{dx}\left[ {{e}^{\ln \left( \ln x \right)\times \ln x}} \right] \\
& \Rightarrow f'\left( x \right)=\dfrac{d\left[ {{e}^{\ln \left( \ln x \right)\times \ln x}} \right]}{d\left[ \ln \left( \ln x \right)\times \ln x \right]}\times \dfrac{d\left[ \ln \left( \ln x \right)\times \ln x \right]}{dx} \\
& \Rightarrow f'\left( x \right)=\left( {{e}^{\ln \left( \ln x \right)\times \ln x}} \right)\times \left[ \ln x.\dfrac{d\ln \left( \ln x \right)}{dx}+\ln \left( \ln x \right).\dfrac{d\left[ \ln x \right]}{dx} \right] \\
& \Rightarrow f'\left( x \right)=f\left( x \right)\times \left[ \ln x\times \dfrac{1}{\ln x}\times \dfrac{1}{x}+\ln \left( \ln x \right)\times \dfrac{1}{x} \right] \\
\end{align}\]
\[\Rightarrow f'\left( x \right)=f\left( x \right)\times \left[ \dfrac{1+\ln \left( \ln x \right)}{x} \right]\] - (1)
Substituting f’ (x) = 0, we get,
\[\begin{align}
& \Rightarrow f\left( x \right)\times \left[ \dfrac{1+\ln \left( \ln x \right)}{x} \right]=0 \\
& \Rightarrow f\left( x \right)\times \left[ 1+\ln \left( \ln x \right) \right]=0 \\
\end{align}\]
Since, f (x) is an exponential function, therefore it cannot be 0 or negative. Therefore,
\[\begin{align}
& \Rightarrow 1+\ln \left( \ln x \right)=0 \\
& \Rightarrow \ln \left( \ln x \right)=-1 \\
& \Rightarrow \ln x={{e}^{-1}} \\
& \Rightarrow \ln x=\dfrac{1}{e} \\
& \Rightarrow x={{e}^{\dfrac{1}{e}}} \\
\end{align}\]
So, we have only one value of x for which f’ (x) = 0. So, let us check if this x is a point of maxima or minima.
Now, differentiating f’ (x), we get,
\[\begin{align}
& \Rightarrow f''\left( x \right)=f\left( x \right)\times d\left[ \dfrac{1+\ln \left( \ln x \right)}{x} \right]+\left[ \dfrac{1+\ln \left( \ln x \right)}{x} \right]\times \dfrac{d\left[ f\left( x \right) \right]}{dx} \\
& \Rightarrow f''\left( x \right)=f\left( x \right)\times \left[ \dfrac{\left( x\times \dfrac{1}{\ln x}\times \dfrac{1}{x} \right)-\left[ \left( 1+\ln \left( \ln x \right) \right) \right]\times 1}{{{x}^{2}}} \right]+\left[ \dfrac{1+\ln \left( \ln x \right)}{x} \right]\times f'\left( x \right) \\
& \Rightarrow f''\left( x \right)=\dfrac{f\left( x \right)}{{{x}^{2}}}\left[ \dfrac{1}{\ln x}-\left( 1+\ln \left( \ln x \right) \right) \right]+\left[ \dfrac{1+\ln \left( \ln x \right)}{x} \right]\times f'\left( x \right) \\
\end{align}\]
Using equation (1), we can write f’’ (x) as: -
\[\begin{align}
& \Rightarrow f''\left( x \right)=\dfrac{f\left( x \right)}{{{x}^{2}}}{{\left[ \dfrac{1}{\ln x}-\left( 1+\ln \left( \ln x \right) \right)+\left[ \dfrac{\left[ 1+\ln \left( \ln x \right) \right]}{x} \right] \right]}^{2}}f\left( x \right) \\
& \Rightarrow f''\left( x \right)=\dfrac{f\left( x \right)}{{{x}^{2}}}\left[ \dfrac{1}{\ln x}-\left( 1+\ln \left( \ln x \right) \right)+{{\left[ 1+\ln \left( \ln x \right) \right]}^{2}} \right] \\
\end{align}\]
Now, at \[x={{e}^{\dfrac{1}{e}}}\], we have,
\[\begin{align}
& \Rightarrow f''\left( x \right)=f''\left( {{e}^{\dfrac{1}{e}}} \right)=\dfrac{f\left( {{e}^{\dfrac{1}{e}}} \right)}{{{\left( {{e}^{\dfrac{1}{e}}} \right)}^{2}}}\left[ \dfrac{1}{\ln {{e}^{\dfrac{1}{e}}}}-\left( 1+\ln \left( \ln {{e}^{\dfrac{1}{e}}} \right) \right)+{{\left[ 1+\ln \left( \ln {{e}^{\dfrac{1}{e}}} \right) \right]}^{2}} \right] \\
& \Rightarrow f''\left( x \right)=f''\left( {{e}^{\dfrac{1}{e}}} \right)=\dfrac{f\left( {{e}^{\dfrac{1}{e}}} \right)}{{{e}^{\dfrac{2}{e}}}}\left[ \dfrac{1}{\dfrac{1}{e}}-\left( 1+\ln \dfrac{1}{e} \right)+{{\left[ 1+\ln \dfrac{1}{e} \right]}^{2}} \right] \\
& \Rightarrow f''\left( x \right)=f''\left( {{e}^{\dfrac{1}{e}}} \right)=\dfrac{f\left( {{e}^{\dfrac{1}{e}}} \right)}{{{e}^{\dfrac{2}{e}}}}\left[ e-\left( 1+\left( -1 \right) \right)+{{\left( 1+\left( -1 \right) \right)}^{2}} \right] \\
& \Rightarrow f''\left( x \right)=f''\left( {{e}^{\dfrac{1}{e}}} \right)=\dfrac{f\left( {{e}^{\dfrac{1}{e}}} \right)}{{{e}^{\dfrac{2}{e}}}}\times e \\
\end{align}\]
Since, all the terms in the above expression are exponential functions, therefor they cannot be negative. Hence, f’’ (x) at \[x={{e}^{\dfrac{1}{e}}}\] will always be positive.
\[\Rightarrow f''\left( {{e}^{\dfrac{1}{e}}} \right)>0\]
Therefore, \[x={{e}^{\dfrac{1}{e}}}\] is a point of minima. Now, \[x={{e}^{\dfrac{1}{e}}}\] can be written as \[x=\sqrt[e]{e}\].
Hence, option (a) is the correct answer.
Note:
One may note that we can apply the first derivative test, instead of the second derivative test to find the correct option. In the first derivative test we will substitute f’ (x) = 0 to find the value of x. Now, we will put this value of x on the number line, if sign of f (x) changes from negative to positive then ‘x’ will be a point of minima and if sign of f (x) changes from positive to negative then ‘x’ will be a point of maxima.
Recently Updated Pages
While covering a distance of 30km Ajeet takes 2 ho-class-11-maths-CBSE

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

