
The function defined by the equation $xy - \log y = 1$ satisfies $x\left( {yy'' + y{'^2}} \right) - y'' + kyy' = 0$ . Find the value of k.
Answer
579k+ views
Hint:
It is given that the equation $xy - \log y = 1$ satisfies $x\left( {yy'' + y{'^2}} \right) - y'' + kyy' = 0$. Also, it can be seen that on doing the double derivative of the equation $xy - \log y = 1$, we get the type of equation $x\left( {yy'' + y{'^2}} \right) - y'' + kyy' = 0$.
Then, write the derived equation in the form of $x\left( {yy'' + y{'^2}} \right) - y'' + kyy' = 0$ and compare to get the value of k.
Complete step by step solution:
The given equation in the question is $xy - \log y = 1$ .
Also, it is given that the equation $xy - \log y = 1$ satisfies $x\left( {yy'' + y{'^2}} \right) - y'' + kyy' = 0$ . It can be seen that on doing the double derivative of the equation $xy - \log y = 1$ , we get the type of equation $x\left( {yy'' + y{'^2}} \right) - y'' + kyy' = 0$ .
So, firstly, we will differentiate the equation $xy - \log y = 1$ with respect to x.
$
\Rightarrow \dfrac{d}{{dx}}\left( {xy - \log y} \right) = \dfrac{d}{{dx}}\left( 1 \right) \\
\Rightarrow \dfrac{d}{{dx}}\left( {xy} \right) - \dfrac{d}{{dx}}\left( {\log y} \right) = 0 \\
$
Apply the formula for derivative of product of two functions u and v $\dfrac{d}{{dx}}\left( {uv} \right) = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}$ on the function xy.
$
\Rightarrow x\dfrac{{dy}}{{dx}} + y\dfrac{{dx}}{{dx}} - \dfrac{1}{y}\dfrac{{dy}}{{dx}} = 0 \\
\Rightarrow xy' + y - \dfrac{1}{y}y' = 0\left( { \Rightarrow \dfrac{{dy}}{{dx}} = y'} \right) \\
\Rightarrow \dfrac{{xyy' + {y^2} - y'}}{y} = 0 \\
\Rightarrow xyy' + {y^2} - y' = 0 \\
$
Now, in order to get the double derivative, we need to differentiate the equation $xyy' + {y^2} - y' = 0$ with respect to x.
$
\Rightarrow \dfrac{d}{{dx}}\left( {xyy' + {y^2} - y'} \right) = \dfrac{d}{{dx}}\left( 0 \right) \\
\Rightarrow \dfrac{d}{{dx}}\left( {xyy'} \right) + \dfrac{d}{{dx}}\left( {{y^2}} \right) - \dfrac{d}{{dx}}\left( {y'} \right) = 0 \\
$
Applying the formula for derivative of triple product $\dfrac{d}{{dx}}\left( {uvw} \right) = \dfrac{{du}}{{dx}}vw + u\dfrac{{dv}}{{dx}}w + uv\dfrac{{dw}}{{dx}}$ on function $xyy'$
$
\Rightarrow \dfrac{{dx}}{{dx}}\left( {yy'} \right) + x\left( {\dfrac{{dy}}{{dx}}} \right)y' + xy\left( {\dfrac{{dy'}}{{dx}}} \right) + 2y\dfrac{{dy}}{{dx}} - y'' = 0 \\
\Rightarrow yy' + xy'y' + xyy'' + 2yy' - y'' = 0 \\
\Rightarrow x\left( {y{'^2} + yy''} \right) + 3yy' - y'' = 0 \\
\Rightarrow x\left( {yy'' + y{'^2}} \right) - y'' + 3yy' = 0 \\
$
Now, to get the required value of k, we will compare the equation $x\left( {yy'' + y{'^2}} \right) - y'' + 3yy' = 0$ with $x\left( {yy'' + y{'^2}} \right) - y'' + kyy' = 0$ .
Thus, on comparing we get \[k = 3\].
Note:
While differentiating the given equation $xy - \log y = 1$ , we have to differentiate both x and y as they both are variables.
Also, when comparing the derived equation after derivation the equation $xy - \log y = 1$ twice, we have to write the derived equation in the form of $x\left( {yy'' + y{'^2}} \right) - y'' + kyy' = 0$ or else we may get the required answer wrong.
It is given that the equation $xy - \log y = 1$ satisfies $x\left( {yy'' + y{'^2}} \right) - y'' + kyy' = 0$. Also, it can be seen that on doing the double derivative of the equation $xy - \log y = 1$, we get the type of equation $x\left( {yy'' + y{'^2}} \right) - y'' + kyy' = 0$.
Then, write the derived equation in the form of $x\left( {yy'' + y{'^2}} \right) - y'' + kyy' = 0$ and compare to get the value of k.
Complete step by step solution:
The given equation in the question is $xy - \log y = 1$ .
Also, it is given that the equation $xy - \log y = 1$ satisfies $x\left( {yy'' + y{'^2}} \right) - y'' + kyy' = 0$ . It can be seen that on doing the double derivative of the equation $xy - \log y = 1$ , we get the type of equation $x\left( {yy'' + y{'^2}} \right) - y'' + kyy' = 0$ .
So, firstly, we will differentiate the equation $xy - \log y = 1$ with respect to x.
$
\Rightarrow \dfrac{d}{{dx}}\left( {xy - \log y} \right) = \dfrac{d}{{dx}}\left( 1 \right) \\
\Rightarrow \dfrac{d}{{dx}}\left( {xy} \right) - \dfrac{d}{{dx}}\left( {\log y} \right) = 0 \\
$
Apply the formula for derivative of product of two functions u and v $\dfrac{d}{{dx}}\left( {uv} \right) = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}$ on the function xy.
$
\Rightarrow x\dfrac{{dy}}{{dx}} + y\dfrac{{dx}}{{dx}} - \dfrac{1}{y}\dfrac{{dy}}{{dx}} = 0 \\
\Rightarrow xy' + y - \dfrac{1}{y}y' = 0\left( { \Rightarrow \dfrac{{dy}}{{dx}} = y'} \right) \\
\Rightarrow \dfrac{{xyy' + {y^2} - y'}}{y} = 0 \\
\Rightarrow xyy' + {y^2} - y' = 0 \\
$
Now, in order to get the double derivative, we need to differentiate the equation $xyy' + {y^2} - y' = 0$ with respect to x.
$
\Rightarrow \dfrac{d}{{dx}}\left( {xyy' + {y^2} - y'} \right) = \dfrac{d}{{dx}}\left( 0 \right) \\
\Rightarrow \dfrac{d}{{dx}}\left( {xyy'} \right) + \dfrac{d}{{dx}}\left( {{y^2}} \right) - \dfrac{d}{{dx}}\left( {y'} \right) = 0 \\
$
Applying the formula for derivative of triple product $\dfrac{d}{{dx}}\left( {uvw} \right) = \dfrac{{du}}{{dx}}vw + u\dfrac{{dv}}{{dx}}w + uv\dfrac{{dw}}{{dx}}$ on function $xyy'$
$
\Rightarrow \dfrac{{dx}}{{dx}}\left( {yy'} \right) + x\left( {\dfrac{{dy}}{{dx}}} \right)y' + xy\left( {\dfrac{{dy'}}{{dx}}} \right) + 2y\dfrac{{dy}}{{dx}} - y'' = 0 \\
\Rightarrow yy' + xy'y' + xyy'' + 2yy' - y'' = 0 \\
\Rightarrow x\left( {y{'^2} + yy''} \right) + 3yy' - y'' = 0 \\
\Rightarrow x\left( {yy'' + y{'^2}} \right) - y'' + 3yy' = 0 \\
$
Now, to get the required value of k, we will compare the equation $x\left( {yy'' + y{'^2}} \right) - y'' + 3yy' = 0$ with $x\left( {yy'' + y{'^2}} \right) - y'' + kyy' = 0$ .
Thus, on comparing we get \[k = 3\].
Note:
While differentiating the given equation $xy - \log y = 1$ , we have to differentiate both x and y as they both are variables.
Also, when comparing the derived equation after derivation the equation $xy - \log y = 1$ twice, we have to write the derived equation in the form of $x\left( {yy'' + y{'^2}} \right) - y'' + kyy' = 0$ or else we may get the required answer wrong.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

India is a sovereign socialist secular democratic republic class 12 social science CBSE

How many states of matter are there in total class 12 chemistry CBSE

What are the advantages of vegetative propagation class 12 biology CBSE

Suicide bags of cells are aEndoplasmic reticulum bLysosome class 12 biology CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

