
The force acting on a mass of $1\;g$ due to the gravitational pull on the earth is called $1\;gwt.$ One $\;gwt$ equals:
(A) $1\;N$
(B) $9.8\;N$
(C) $980\;dyne$
(D) None of these
Answer
552.9k+ views
Hint: It is given that the force acting on a body having a mass of $1\;g$ will be equal to $1\;gwt$. The weight of an object will be the result of the mass of the object as well as the acceleration due to gravity. The weight of the object will vary from place to place. Here we have to find the equivalent force of one $\;gwt$.
Complete Step by step solution:
The weight of an object is the product of its given mass and the acceleration due to the gravity of the earth. Hence we can write $1\;gwt$ as,
The mass of the object is given as $1\;g$
We know that the acceleration due to gravity is generally taken as $9.8m/{s^2}$
Putting these values into an equation, we can write,
$1gwt = 1g \times 9.8m/{s^2}$
We can write $1\;g$ as,$1g = \dfrac{1}{{1000}}kg$
Putting this in the above equation, we get
$1gwt = \dfrac{1}{{1000}} \times 9.8$
We know that force is the product of mass and acceleration, hence we can write
$1gwt = 0.001kg \times 9.8m/{s^2} = 0.0098N$
We know that the value of $1N = {10^5}dyne$
Substituting this value in the above equation, we get
$1gwt = 0.0098 \times {10^5}dyne = 980dyne$
Therefore, we can say that-
The correct answer is: Option (C): $980\;dyne$.
Note:
There are two types of masses. The inertial mass of a body is defined as the ratio of the force applied on the body to the acceleration produced on it. But gravitational mass is defined as the ratio of the weight of the body to the acceleration due to gravity. It is equal to the inertial mass. Thus we conclude that inertial and gravitational masses are the same for everybody in the universe.
Complete Step by step solution:
The weight of an object is the product of its given mass and the acceleration due to the gravity of the earth. Hence we can write $1\;gwt$ as,
The mass of the object is given as $1\;g$
We know that the acceleration due to gravity is generally taken as $9.8m/{s^2}$
Putting these values into an equation, we can write,
$1gwt = 1g \times 9.8m/{s^2}$
We can write $1\;g$ as,$1g = \dfrac{1}{{1000}}kg$
Putting this in the above equation, we get
$1gwt = \dfrac{1}{{1000}} \times 9.8$
We know that force is the product of mass and acceleration, hence we can write
$1gwt = 0.001kg \times 9.8m/{s^2} = 0.0098N$
We know that the value of $1N = {10^5}dyne$
Substituting this value in the above equation, we get
$1gwt = 0.0098 \times {10^5}dyne = 980dyne$
Therefore, we can say that-
The correct answer is: Option (C): $980\;dyne$.
Note:
There are two types of masses. The inertial mass of a body is defined as the ratio of the force applied on the body to the acceleration produced on it. But gravitational mass is defined as the ratio of the weight of the body to the acceleration due to gravity. It is equal to the inertial mass. Thus we conclude that inertial and gravitational masses are the same for everybody in the universe.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

