
The following data gives the information on the observed life times (in hours) of 225 electrical components.
Lifetime(in Hours) 0-20 20-40 40-60 60-80 80-100 100-120 Frequency 10 35 52 61 38 29
Determine the modal life times of components.
| Lifetime(in Hours) | 0-20 | 20-40 | 40-60 | 60-80 | 80-100 | 100-120 |
| Frequency | 10 | 35 | 52 | 61 | 38 | 29 |
Answer
568.8k+ views
Hint: To find the modal class we have to identify the class interval with maximum frequency in this question 61 is the highest frequency so modal class is 60-80
$\begin{align}
& l\text{ is lower limit of modal class} \\
& h\text{ is class interval} \\
& {{f}_{1}}\text{ is frequency of class modal class} \\
& {{f}_{0}}\text{is frequency of class before modal class} \\
& {{f}_{2}}\text{ is frequency of class after modal class} \\
\end{align}$
$l=60,\text{ }{{f}_{0}}=52,\text{ }{{f}_{1}}=61,\text{ }{{f}_{2}}=38$
Formula used:
$Mode=\dfrac{{{f}_{1}}-{{f}_{0}}}{2{{f}_{1}}-{{f}_{0}}-{{f}_{2}}}\times h$
Where
Modal class: Interval with highest frequency
$\begin{align}
& l=\text{lower limit of modal class} \\
& h=\text{class interval} \\
& {{f}_{1}}=\text{frequency of class modal class} \\
& {{f}_{0}}=\text{frequency of class before modal class} \\
& {{f}_{2}}=\text{frequency of class after modal class} \\
\end{align}$
Complete step-by-step answer:
Highest frequency of the data is 61
61 belongs to the interval 60-80
Therefore $l=60\text{ }\!\!\And\!\!\text{ }{{f}_{1}}=61$
$\begin{align}
& \text{frequency of the previous class i}\text{.e}\text{.}\left( 40-60 \right)\text{ is }=52={{f}_{0}} \\
& \text{frequency of the ne }\!\!~\!\!\text{ xt class i}\text{.e}\text{. }\left( 80-100 \right)\text{ is }=38={{f}_{2}} \\
& \text{class interval }=80-60 \\
& \text{ }=20=h \\
\end{align}$
$\begin{align}
& Mode=l+\dfrac{{{f}_{1}}+{{f}_{0}}}{2{{f}_{1}}-{{f}_{0}}-{{f}_{2}}}\times h \\
& \text{ }=60+\dfrac{61-52}{2\left( 61 \right)-52-38}\times 20\text{ }\left( \text{adding 52 }\!\!\And\!\!\text{ 38} \right) \\
& \text{ }=60+\dfrac{9}{122-90}\times 20 \\
& \text{ }=60+\dfrac{9}{32}\times 20\text{ }\left( \text{Divide by 4} \right) \\
& \text{ }=60+\dfrac{45}{8} \\
\end{align}$
$\begin{align}
& =60+5\cdot 625 \\
& =65\cdot 625 \\
\end{align}$
$\text{Modal lifetimes of the components}=65\cdot 625\left( \text{hours} \right)$
Additional information:
Whereas,
$\begin{align}
& 52={{f}_{0}} \\
& 61={{f}_{1}} \\
& 38={{f}_{2}} \\
\end{align}$
Students can solve directly
$Mode=l+\dfrac{{{f}_{1}}-{{f}_{0}}}{2{{f}_{1}}-{{f}_{0}}-{{f}_{2}}}\times h$
Subletting the values and simplifying.
Note: For this particular question 61 is the highest frequency so modal class is 60-80 so lower limit is 60, frequency of modal class is 61, frequency of previous class is 62, frequency of next class is 38 and class interval is 80. By substituting the values in the formula we can calculate the modal life times Please do mention that Modal lifetimes in have for this particular case $65\cdot 625\text{ hours}$ .
$\begin{align}
& l\text{ is lower limit of modal class} \\
& h\text{ is class interval} \\
& {{f}_{1}}\text{ is frequency of class modal class} \\
& {{f}_{0}}\text{is frequency of class before modal class} \\
& {{f}_{2}}\text{ is frequency of class after modal class} \\
\end{align}$
$l=60,\text{ }{{f}_{0}}=52,\text{ }{{f}_{1}}=61,\text{ }{{f}_{2}}=38$
Formula used:
$Mode=\dfrac{{{f}_{1}}-{{f}_{0}}}{2{{f}_{1}}-{{f}_{0}}-{{f}_{2}}}\times h$
Where
Modal class: Interval with highest frequency
$\begin{align}
& l=\text{lower limit of modal class} \\
& h=\text{class interval} \\
& {{f}_{1}}=\text{frequency of class modal class} \\
& {{f}_{0}}=\text{frequency of class before modal class} \\
& {{f}_{2}}=\text{frequency of class after modal class} \\
\end{align}$
Complete step-by-step answer:
Highest frequency of the data is 61
61 belongs to the interval 60-80
Therefore $l=60\text{ }\!\!\And\!\!\text{ }{{f}_{1}}=61$
$\begin{align}
& \text{frequency of the previous class i}\text{.e}\text{.}\left( 40-60 \right)\text{ is }=52={{f}_{0}} \\
& \text{frequency of the ne }\!\!~\!\!\text{ xt class i}\text{.e}\text{. }\left( 80-100 \right)\text{ is }=38={{f}_{2}} \\
& \text{class interval }=80-60 \\
& \text{ }=20=h \\
\end{align}$
$\begin{align}
& Mode=l+\dfrac{{{f}_{1}}+{{f}_{0}}}{2{{f}_{1}}-{{f}_{0}}-{{f}_{2}}}\times h \\
& \text{ }=60+\dfrac{61-52}{2\left( 61 \right)-52-38}\times 20\text{ }\left( \text{adding 52 }\!\!\And\!\!\text{ 38} \right) \\
& \text{ }=60+\dfrac{9}{122-90}\times 20 \\
& \text{ }=60+\dfrac{9}{32}\times 20\text{ }\left( \text{Divide by 4} \right) \\
& \text{ }=60+\dfrac{45}{8} \\
\end{align}$
$\begin{align}
& =60+5\cdot 625 \\
& =65\cdot 625 \\
\end{align}$
$\text{Modal lifetimes of the components}=65\cdot 625\left( \text{hours} \right)$
Additional information:
| \[\] Life times hours | Frequency |
| 0-20 | 10 |
| 20-40 | 35 |
| 40-60 | 52 |
| 60-80 | 61 |
| 80-100 | 38 |
| 100-120 | 29 |
Whereas,
$\begin{align}
& 52={{f}_{0}} \\
& 61={{f}_{1}} \\
& 38={{f}_{2}} \\
\end{align}$
Students can solve directly
$Mode=l+\dfrac{{{f}_{1}}-{{f}_{0}}}{2{{f}_{1}}-{{f}_{0}}-{{f}_{2}}}\times h$
Subletting the values and simplifying.
Note: For this particular question 61 is the highest frequency so modal class is 60-80 so lower limit is 60, frequency of modal class is 61, frequency of previous class is 62, frequency of next class is 38 and class interval is 80. By substituting the values in the formula we can calculate the modal life times Please do mention that Modal lifetimes in have for this particular case $65\cdot 625\text{ hours}$ .
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Convert 40circ C to Fahrenheit A 104circ F B 107circ class 8 maths CBSE

Advantages and disadvantages of science

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE


