
The following data gives distribution of height of students-
Height(in cm) 160 150 152 161 156 154 155 Number of students 12 8 4 4 3 3 7
Find the median of distribution-
A)154 B)155 C)160 D)161
| Height(in cm) | 160 | 150 | 152 | 161 | 156 | 154 | 155 |
| Number of students | 12 | 8 | 4 | 4 | 3 | 3 | 7 |
Answer
573.6k+ views
Hint: First we have to arrange the data in ascending order of height. Make three tables, in the third table calculate cumulative frequency. If the total frequency is even number use formula
Median distribution= ${\dfrac{{\text{n}}}{2}^{{\text{th}}}}{\text{term}}$ where n is total frequency.
If n is odd number use the formula,
Median distribution=${\dfrac{{\left( {{\text{n + 1}}} \right)}}{2}^{{\text{th}}}}{\text{term}}$ where n is total frequency. Find the term.
Complete step-by-step answer:
Here, we are given the height of students and number of students. First we will arrange the heights in ascending order and find the cumulative frequency. For this we will make three tables instead of two and calculate the data in the following manner- as $150$ is the smallest number here,it will come first then we will go in ascending order upto $161$.
If the total frequency is even number use formula-
Median distribution= ${\dfrac{{\text{n}}}{2}^{{\text{th}}}}{\text{term}}$ where n is total frequency. If n is odd number use the formula,
Median distribution=${\dfrac{{\left( {{\text{n + 1}}} \right)}}{2}^{{\text{th}}}}{\text{term}}$ where n is total frequency.
Since here, the total number of students is $41$ which is an odd number. So we will use the formula-
$ \Rightarrow $ Median distribution=${\dfrac{{\left( {{\text{n + 1}}} \right)}}{2}^{{\text{th}}}}{\text{term}}$ where n is total frequency. Here n is the total number of students. So on putting the values, we get-
$ \Rightarrow $ Median distribution=${\dfrac{{\left( {{\text{41 + 1}}} \right)}}{2}^{{\text{th}}}}{\text{term}}$
On solving and simplifying, we get-
$ \Rightarrow $ Median distribution=${\dfrac{{\left( {{\text{42}}} \right)}}{2}^{{\text{th}}}}{\text{term = 2}}{{\text{1}}^{{\text{th}}}}{\text{term}}$
Here, we have to find the ${21^{{\text{th}}}}{\text{term}}$. So the corresponding term is $155$ as it is between ${15^{{\text{th}}}}{\text{ and }}{22^{{\text{th}}}}{\text{term}}$ .
Hence, the correct answer is ‘B’.
Note: The student may obtain the wrong answer is he/she does not arrange the heights in ascending order. This is because there are different numbers of students of different heights so when you calculate cumulative frequency without arranging in ascending order, you may get the wrong term as answer.
Median distribution= ${\dfrac{{\text{n}}}{2}^{{\text{th}}}}{\text{term}}$ where n is total frequency.
If n is odd number use the formula,
Median distribution=${\dfrac{{\left( {{\text{n + 1}}} \right)}}{2}^{{\text{th}}}}{\text{term}}$ where n is total frequency. Find the term.
Complete step-by-step answer:
Here, we are given the height of students and number of students. First we will arrange the heights in ascending order and find the cumulative frequency. For this we will make three tables instead of two and calculate the data in the following manner- as $150$ is the smallest number here,it will come first then we will go in ascending order upto $161$.
| Height(in cm) | Frequency | Cumulative frequency |
| 150 | 8 | 8 |
| 152 | 4 | 8 + 4 = 12 |
| 154 | 3 | 12 + 3 = 15 |
| 155 | 7 | 15 + 7 = 22 |
| 156 | 3 | 22 + 3 = 25 |
| 160 | 12 | 25 + 12 = 37 |
| 161 | 4 | 37 + 4 = 41 |
If the total frequency is even number use formula-
Median distribution= ${\dfrac{{\text{n}}}{2}^{{\text{th}}}}{\text{term}}$ where n is total frequency. If n is odd number use the formula,
Median distribution=${\dfrac{{\left( {{\text{n + 1}}} \right)}}{2}^{{\text{th}}}}{\text{term}}$ where n is total frequency.
Since here, the total number of students is $41$ which is an odd number. So we will use the formula-
$ \Rightarrow $ Median distribution=${\dfrac{{\left( {{\text{n + 1}}} \right)}}{2}^{{\text{th}}}}{\text{term}}$ where n is total frequency. Here n is the total number of students. So on putting the values, we get-
$ \Rightarrow $ Median distribution=${\dfrac{{\left( {{\text{41 + 1}}} \right)}}{2}^{{\text{th}}}}{\text{term}}$
On solving and simplifying, we get-
$ \Rightarrow $ Median distribution=${\dfrac{{\left( {{\text{42}}} \right)}}{2}^{{\text{th}}}}{\text{term = 2}}{{\text{1}}^{{\text{th}}}}{\text{term}}$
Here, we have to find the ${21^{{\text{th}}}}{\text{term}}$. So the corresponding term is $155$ as it is between ${15^{{\text{th}}}}{\text{ and }}{22^{{\text{th}}}}{\text{term}}$ .
Hence, the correct answer is ‘B’.
Note: The student may obtain the wrong answer is he/she does not arrange the heights in ascending order. This is because there are different numbers of students of different heights so when you calculate cumulative frequency without arranging in ascending order, you may get the wrong term as answer.
Recently Updated Pages
In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

In cricket, what is a "tail-ender"?

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

Write an application to the principal requesting five class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Who Won 36 Oscar Awards? Record Holder Revealed

