Answer
Verified
441.3k+ views
Hint: First we have to arrange the data in ascending order of height. Make three tables, in the third table calculate cumulative frequency. If the total frequency is even number use formula
Median distribution= ${\dfrac{{\text{n}}}{2}^{{\text{th}}}}{\text{term}}$ where n is total frequency.
If n is odd number use the formula,
Median distribution=${\dfrac{{\left( {{\text{n + 1}}} \right)}}{2}^{{\text{th}}}}{\text{term}}$ where n is total frequency. Find the term.
Complete step-by-step answer:
Here, we are given the height of students and number of students. First we will arrange the heights in ascending order and find the cumulative frequency. For this we will make three tables instead of two and calculate the data in the following manner- as $150$ is the smallest number here,it will come first then we will go in ascending order upto $161$.
If the total frequency is even number use formula-
Median distribution= ${\dfrac{{\text{n}}}{2}^{{\text{th}}}}{\text{term}}$ where n is total frequency. If n is odd number use the formula,
Median distribution=${\dfrac{{\left( {{\text{n + 1}}} \right)}}{2}^{{\text{th}}}}{\text{term}}$ where n is total frequency.
Since here, the total number of students is $41$ which is an odd number. So we will use the formula-
$ \Rightarrow $ Median distribution=${\dfrac{{\left( {{\text{n + 1}}} \right)}}{2}^{{\text{th}}}}{\text{term}}$ where n is total frequency. Here n is the total number of students. So on putting the values, we get-
$ \Rightarrow $ Median distribution=${\dfrac{{\left( {{\text{41 + 1}}} \right)}}{2}^{{\text{th}}}}{\text{term}}$
On solving and simplifying, we get-
$ \Rightarrow $ Median distribution=${\dfrac{{\left( {{\text{42}}} \right)}}{2}^{{\text{th}}}}{\text{term = 2}}{{\text{1}}^{{\text{th}}}}{\text{term}}$
Here, we have to find the ${21^{{\text{th}}}}{\text{term}}$. So the corresponding term is $155$ as it is between ${15^{{\text{th}}}}{\text{ and }}{22^{{\text{th}}}}{\text{term}}$ .
Hence, the correct answer is ‘B’.
Note: The student may obtain the wrong answer is he/she does not arrange the heights in ascending order. This is because there are different numbers of students of different heights so when you calculate cumulative frequency without arranging in ascending order, you may get the wrong term as answer.
Median distribution= ${\dfrac{{\text{n}}}{2}^{{\text{th}}}}{\text{term}}$ where n is total frequency.
If n is odd number use the formula,
Median distribution=${\dfrac{{\left( {{\text{n + 1}}} \right)}}{2}^{{\text{th}}}}{\text{term}}$ where n is total frequency. Find the term.
Complete step-by-step answer:
Here, we are given the height of students and number of students. First we will arrange the heights in ascending order and find the cumulative frequency. For this we will make three tables instead of two and calculate the data in the following manner- as $150$ is the smallest number here,it will come first then we will go in ascending order upto $161$.
Height(in cm) | Frequency | Cumulative frequency |
150 | 8 | 8 |
152 | 4 | 8 + 4 = 12 |
154 | 3 | 12 + 3 = 15 |
155 | 7 | 15 + 7 = 22 |
156 | 3 | 22 + 3 = 25 |
160 | 12 | 25 + 12 = 37 |
161 | 4 | 37 + 4 = 41 |
If the total frequency is even number use formula-
Median distribution= ${\dfrac{{\text{n}}}{2}^{{\text{th}}}}{\text{term}}$ where n is total frequency. If n is odd number use the formula,
Median distribution=${\dfrac{{\left( {{\text{n + 1}}} \right)}}{2}^{{\text{th}}}}{\text{term}}$ where n is total frequency.
Since here, the total number of students is $41$ which is an odd number. So we will use the formula-
$ \Rightarrow $ Median distribution=${\dfrac{{\left( {{\text{n + 1}}} \right)}}{2}^{{\text{th}}}}{\text{term}}$ where n is total frequency. Here n is the total number of students. So on putting the values, we get-
$ \Rightarrow $ Median distribution=${\dfrac{{\left( {{\text{41 + 1}}} \right)}}{2}^{{\text{th}}}}{\text{term}}$
On solving and simplifying, we get-
$ \Rightarrow $ Median distribution=${\dfrac{{\left( {{\text{42}}} \right)}}{2}^{{\text{th}}}}{\text{term = 2}}{{\text{1}}^{{\text{th}}}}{\text{term}}$
Here, we have to find the ${21^{{\text{th}}}}{\text{term}}$. So the corresponding term is $155$ as it is between ${15^{{\text{th}}}}{\text{ and }}{22^{{\text{th}}}}{\text{term}}$ .
Hence, the correct answer is ‘B’.
Note: The student may obtain the wrong answer is he/she does not arrange the heights in ascending order. This is because there are different numbers of students of different heights so when you calculate cumulative frequency without arranging in ascending order, you may get the wrong term as answer.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
10 examples of evaporation in daily life with explanations
Write a letter to the principal requesting him to grant class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Name 10 Living and Non living things class 9 biology CBSE