
The factors of \[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc\] are
Answer
520.5k+ views
Hint: From the given question we have been asked to find the factors of given expression. For answering this question we will use factorization and factor theorem. We will assume that \[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc\] be a function in a and we will use the substitution method and solve the given question using factor theorem and basic mathematical operations like addition and subtraction. So, the solution will be as follows.
Complete step by step solution:
We have been given \[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc\].
So, as mentioned in the above we will assume that,
\[\Rightarrow f(a)={{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc\] be a function in a.
Now, we will use the substitution and we will substitute \[a=-(b+c)\] in the above function. So, we get the reduced as follows.
\[\Rightarrow f(-(b+c))={{\left( -\left( b+c \right) \right)}^{3}}+{{b}^{3}}+{{c}^{3}}+3(b+c)bc\]
Now we will expand this equation using basic mathematical operations like addition and subtraction.
\[\Rightarrow f(-(b+c))={{\left( -\left( b+c \right) \right)}^{3}}+{{\left( b+c \right)}^{3}}\]
\[\Rightarrow f(-(b+c)=0\]
Hence, by factor theorem \[(a+b+c)\] is a factor.
Now we take the given \[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc\] function.
\[\Rightarrow {{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc\]
We can rewrite this expression as follows.
\[\Rightarrow {{a}^{3}}+\left( {{b}^{3}}+{{c}^{3}} \right)-3abc\]
We can rewrite the above expression as follows by adding and subtracting the term \[-3bc\left( b+c \right)\]
\[\Rightarrow {{a}^{3}}+{{\left( b+c \right)}^{3}}-3abc-3bc\left( b+c \right)\]
We already got \[(a+b+c)\] as a factor. So, we sill substitute \[\left( b+c=-a \right)\] in the above expression.
So, we get the expression reduced as follows.
\[\Rightarrow {{a}^{3}}+{{\left( b+c \right)}^{3}}-3abc-3bc\left( -a \right)\]
\[\Rightarrow {{a}^{3}}+{{\left( b+c \right)}^{3}}-3abc+3bca\]
\[\Rightarrow {{a}^{3}}+{{\left( b+c \right)}^{3}}\]
Now we will use the formula \[\Rightarrow {{x}^{3}}+{{y}^{3}}=\left( x+y \right)\left( {{x}^{2}}+{{y}^{2}}-xy \right)\]
So, here by comparing we get \[\left( b+c=y \right)\]. So, we will substitute them in this formula. Now, we get the equation reduced as follows.
\[\Rightarrow \left( a+b+c \right)\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2bc-ab-ac \right)\]
So, the factors are \[\Rightarrow \left( a+b+c \right),\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2bc-ab-ac \right)\]
Note: Students should have good knowledge in the concept of factorisation. Students should be able to do calculations without any errors. Students should know the formulae like,
\[\Rightarrow {{x}^{3}}+{{y}^{3}}=\left( x+y \right)\left( {{x}^{2}}+{{y}^{2}}-xy \right)\] to solve the question.
Complete step by step solution:
We have been given \[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc\].
So, as mentioned in the above we will assume that,
\[\Rightarrow f(a)={{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc\] be a function in a.
Now, we will use the substitution and we will substitute \[a=-(b+c)\] in the above function. So, we get the reduced as follows.
\[\Rightarrow f(-(b+c))={{\left( -\left( b+c \right) \right)}^{3}}+{{b}^{3}}+{{c}^{3}}+3(b+c)bc\]
Now we will expand this equation using basic mathematical operations like addition and subtraction.
\[\Rightarrow f(-(b+c))={{\left( -\left( b+c \right) \right)}^{3}}+{{\left( b+c \right)}^{3}}\]
\[\Rightarrow f(-(b+c)=0\]
Hence, by factor theorem \[(a+b+c)\] is a factor.
Now we take the given \[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc\] function.
\[\Rightarrow {{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc\]
We can rewrite this expression as follows.
\[\Rightarrow {{a}^{3}}+\left( {{b}^{3}}+{{c}^{3}} \right)-3abc\]
We can rewrite the above expression as follows by adding and subtracting the term \[-3bc\left( b+c \right)\]
\[\Rightarrow {{a}^{3}}+{{\left( b+c \right)}^{3}}-3abc-3bc\left( b+c \right)\]
We already got \[(a+b+c)\] as a factor. So, we sill substitute \[\left( b+c=-a \right)\] in the above expression.
So, we get the expression reduced as follows.
\[\Rightarrow {{a}^{3}}+{{\left( b+c \right)}^{3}}-3abc-3bc\left( -a \right)\]
\[\Rightarrow {{a}^{3}}+{{\left( b+c \right)}^{3}}-3abc+3bca\]
\[\Rightarrow {{a}^{3}}+{{\left( b+c \right)}^{3}}\]
Now we will use the formula \[\Rightarrow {{x}^{3}}+{{y}^{3}}=\left( x+y \right)\left( {{x}^{2}}+{{y}^{2}}-xy \right)\]
So, here by comparing we get \[\left( b+c=y \right)\]. So, we will substitute them in this formula. Now, we get the equation reduced as follows.
\[\Rightarrow \left( a+b+c \right)\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2bc-ab-ac \right)\]
So, the factors are \[\Rightarrow \left( a+b+c \right),\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2bc-ab-ac \right)\]
Note: Students should have good knowledge in the concept of factorisation. Students should be able to do calculations without any errors. Students should know the formulae like,
\[\Rightarrow {{x}^{3}}+{{y}^{3}}=\left( x+y \right)\left( {{x}^{2}}+{{y}^{2}}-xy \right)\] to solve the question.
Recently Updated Pages
You are awaiting your class 10th results Meanwhile class 7 english CBSE

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Trending doubts
Convert 200 Million dollars in rupees class 7 maths CBSE

i What trees does Mr Wonka mention Which tree does class 7 english CBSE

What are the controls affecting the climate of Ind class 7 social science CBSE

What was the main occupation of early Aryans of rig class 7 social science CBSE

Write a letter to the editor of the national daily class 7 english CBSE

Welcome speech for Christmas day celebration class 7 english CBSE


