
The expression \[\tan A+\tan \left( 60+A \right)-\tan \left( 60-A \right)\] is equal to
A). \[3\tan 3A\]
B). \[\tan 3A\]
C). \[\cot 3A\]
D). \[\sin 3A\]
Answer
447.9k+ views
Hint: In order to find the solution to the given multiple-choice question that is to find \[\tan A+\tan \left( 60+A \right)-\tan \left( 60-A \right)\]is equal to which of the given options, simplify the given trigonometric expression with help of following identities of tangent in trigonometry that are: \[\tan \left( x+y \right)=\dfrac{\tan x+\tan y}{1-\tan x\tan y}\], \[\tan \left( x-y \right)=\dfrac{\tan x-\tan y}{1+\tan x\tan y}\]and \[\tan 3x=\dfrac{3\tan x-{{\tan }^{3}}x}{1-3{{\tan }^{2}}x}\].
Complete step by step solution:
According to the question, given trigonometric expression in the question is as follows:
\[\tan A+\tan \left( 60+A \right)-\tan \left( 60-A \right)...\left( 1 \right)\]
To simplify the above expression, apply one of the trigonometric identities of tangent that is\[\tan \left( x+y \right)=\dfrac{\tan x+\tan y}{1-\tan x\tan y}\] on \[\tan \left( 60+A \right)\], we get:
\[\Rightarrow \tan \left( 60+A \right)=\dfrac{\tan {{60}^{\circ }}+\tan A}{1-\tan {{60}^{\circ }}\tan A}\]
We know that \[\tan {{60}^{\circ }}=\sqrt{3}\], substituting this value in the above equation, we get:
\[\Rightarrow \tan \left( 60+A \right)=\dfrac{\sqrt{3}+\tan A}{1-\sqrt{3}\tan A}...\left( 2 \right)\]
Now apply another trigonometric identity of tangent that is\[\tan \left( x-y \right)=\dfrac{\tan x-\tan y}{1+\tan x\tan y}\] on \[\tan \left( 60-A \right)\], we get:
\[\Rightarrow \tan \left( 60-A \right)=\dfrac{\tan {{60}^{\circ }}-\tan A}{1+\tan {{60}^{\circ }}\tan A}\]
We know that \[\tan {{60}^{\circ }}=\sqrt{3}\], substituting this value in the above equation, we get:
\[\Rightarrow \tan \left( 60+A \right)=\dfrac{\sqrt{3}-\tan A}{1+\sqrt{3}\tan A}...\left( 3 \right)\]
Now with the help of the equation \[\left( 2 \right)\] and \[\left( 3 \right)\]we will first simplify, \[\tan \left( 60+A \right)-\tan \left( 60-A \right)\] as follows:
\[\Rightarrow \tan \left( 60+A \right)-\tan \left( 60-A \right)=\dfrac{\sqrt{3}+\tan A}{1-\sqrt{3}\tan A}-\dfrac{\sqrt{3}-\tan A}{1+\sqrt{3}\tan A}\]
To simplify it further, solve the terms in the right-hand side of the equation by taking the LCM, we get:
\[\Rightarrow \tan \left( 60+A \right)-\tan \left( 60-A \right)=\dfrac{\left( \sqrt{3}+\tan A \right)\left( 1+\sqrt{3}\tan A \right)-\left( \sqrt{3}-\tan A \right)\left( 1-\sqrt{3}\tan A \right)}{\left( 1-\sqrt{3}\tan A \right)\left( 1+\sqrt{3}\tan A \right)}\]
Now the identity \[\left( {{a}^{2}}-{{b}^{2}} \right)=\left( a+b \right)\left( a-b \right)\] on the denominator of the fraction in the right-hand side of the above equation, we get:
\[\Rightarrow \dfrac{\left( \sqrt{3}+\tan A \right)\left( 1+\sqrt{3}\tan A \right)-\left( \sqrt{3}-\tan A \right)\left( 1-\sqrt{3}\tan A \right)}{{{1}^{2}}-{{\left( \sqrt{3}\tan A \right)}^{2}}}\]
To solve it further, open the brackets with help of multiplication and addition in the above equation, we get:
\[\Rightarrow \dfrac{\sqrt{3}+3\tan A+\tan A+\sqrt{3}{{\tan }^{2}}A-\sqrt{3}+3\tan A+\tan A-\sqrt{3}{{\tan }^{2}}A}{1-3{{\tan }^{2}}A}\]
After solving the terms in the numerator of the above expression we get:
\[\Rightarrow \tan \left( 60+A \right)-\tan \left( 60-A \right)=\dfrac{8\tan A}{1-3{{\tan }^{2}}A}...\left( 4 \right)\]
Now, substituting the value of the equation \[\left( 4 \right)\] in the equation \[\left( 1 \right)\], we get:
\[\Rightarrow \tan A+\tan \left( 60+A \right)-\tan \left( 60-A \right)=\tan A+\dfrac{8\tan A}{1-3{{\tan }^{2}}A}\]
To simplify it further, solve the terms in the right-hand side of the equation by taking the LCM, we get:
\[\Rightarrow \dfrac{\tan A-3{{\tan }^{3}}A+8\tan A}{1-3{{\tan }^{2}}A}\]
After solving the terms in the numerator of the above expression, we get:
\[\Rightarrow \dfrac{3\left( 3\tan A-{{\tan }^{3}}A \right)}{1-3{{\tan }^{2}}A}\]
Now apply one of the trigonometric identities of tangent that is \[\tan 3x=\dfrac{3\tan x-{{\tan }^{3}}x}{1-3{{\tan }^{2}}x}\] in the above expression, we get:
\[\Rightarrow \tan A+\tan \left( 60+A \right)-\tan \left( 60-A \right)=3\tan 3A\]
Therefore, \[\tan A+\tan \left( 60+A \right)-\tan \left( 60-A \right)\] is equal to \[3\tan 3A\]and hence option (a) is the correct answer.
Note: Students usually get confused and interchange between the sign of the identities \[\tan \left( x+y \right)=\dfrac{\tan x+\tan y}{1-\tan x\tan y}\]and \[\tan \left( x-y \right)=\dfrac{\tan x-\tan y}{1+\tan x\tan y}\]. Key point is to remember the right formula/identity.
Complete step by step solution:
According to the question, given trigonometric expression in the question is as follows:
\[\tan A+\tan \left( 60+A \right)-\tan \left( 60-A \right)...\left( 1 \right)\]
To simplify the above expression, apply one of the trigonometric identities of tangent that is\[\tan \left( x+y \right)=\dfrac{\tan x+\tan y}{1-\tan x\tan y}\] on \[\tan \left( 60+A \right)\], we get:
\[\Rightarrow \tan \left( 60+A \right)=\dfrac{\tan {{60}^{\circ }}+\tan A}{1-\tan {{60}^{\circ }}\tan A}\]
We know that \[\tan {{60}^{\circ }}=\sqrt{3}\], substituting this value in the above equation, we get:
\[\Rightarrow \tan \left( 60+A \right)=\dfrac{\sqrt{3}+\tan A}{1-\sqrt{3}\tan A}...\left( 2 \right)\]
Now apply another trigonometric identity of tangent that is\[\tan \left( x-y \right)=\dfrac{\tan x-\tan y}{1+\tan x\tan y}\] on \[\tan \left( 60-A \right)\], we get:
\[\Rightarrow \tan \left( 60-A \right)=\dfrac{\tan {{60}^{\circ }}-\tan A}{1+\tan {{60}^{\circ }}\tan A}\]
We know that \[\tan {{60}^{\circ }}=\sqrt{3}\], substituting this value in the above equation, we get:
\[\Rightarrow \tan \left( 60+A \right)=\dfrac{\sqrt{3}-\tan A}{1+\sqrt{3}\tan A}...\left( 3 \right)\]
Now with the help of the equation \[\left( 2 \right)\] and \[\left( 3 \right)\]we will first simplify, \[\tan \left( 60+A \right)-\tan \left( 60-A \right)\] as follows:
\[\Rightarrow \tan \left( 60+A \right)-\tan \left( 60-A \right)=\dfrac{\sqrt{3}+\tan A}{1-\sqrt{3}\tan A}-\dfrac{\sqrt{3}-\tan A}{1+\sqrt{3}\tan A}\]
To simplify it further, solve the terms in the right-hand side of the equation by taking the LCM, we get:
\[\Rightarrow \tan \left( 60+A \right)-\tan \left( 60-A \right)=\dfrac{\left( \sqrt{3}+\tan A \right)\left( 1+\sqrt{3}\tan A \right)-\left( \sqrt{3}-\tan A \right)\left( 1-\sqrt{3}\tan A \right)}{\left( 1-\sqrt{3}\tan A \right)\left( 1+\sqrt{3}\tan A \right)}\]
Now the identity \[\left( {{a}^{2}}-{{b}^{2}} \right)=\left( a+b \right)\left( a-b \right)\] on the denominator of the fraction in the right-hand side of the above equation, we get:
\[\Rightarrow \dfrac{\left( \sqrt{3}+\tan A \right)\left( 1+\sqrt{3}\tan A \right)-\left( \sqrt{3}-\tan A \right)\left( 1-\sqrt{3}\tan A \right)}{{{1}^{2}}-{{\left( \sqrt{3}\tan A \right)}^{2}}}\]
To solve it further, open the brackets with help of multiplication and addition in the above equation, we get:
\[\Rightarrow \dfrac{\sqrt{3}+3\tan A+\tan A+\sqrt{3}{{\tan }^{2}}A-\sqrt{3}+3\tan A+\tan A-\sqrt{3}{{\tan }^{2}}A}{1-3{{\tan }^{2}}A}\]
After solving the terms in the numerator of the above expression we get:
\[\Rightarrow \tan \left( 60+A \right)-\tan \left( 60-A \right)=\dfrac{8\tan A}{1-3{{\tan }^{2}}A}...\left( 4 \right)\]
Now, substituting the value of the equation \[\left( 4 \right)\] in the equation \[\left( 1 \right)\], we get:
\[\Rightarrow \tan A+\tan \left( 60+A \right)-\tan \left( 60-A \right)=\tan A+\dfrac{8\tan A}{1-3{{\tan }^{2}}A}\]
To simplify it further, solve the terms in the right-hand side of the equation by taking the LCM, we get:
\[\Rightarrow \dfrac{\tan A-3{{\tan }^{3}}A+8\tan A}{1-3{{\tan }^{2}}A}\]
After solving the terms in the numerator of the above expression, we get:
\[\Rightarrow \dfrac{3\left( 3\tan A-{{\tan }^{3}}A \right)}{1-3{{\tan }^{2}}A}\]
Now apply one of the trigonometric identities of tangent that is \[\tan 3x=\dfrac{3\tan x-{{\tan }^{3}}x}{1-3{{\tan }^{2}}x}\] in the above expression, we get:
\[\Rightarrow \tan A+\tan \left( 60+A \right)-\tan \left( 60-A \right)=3\tan 3A\]
Therefore, \[\tan A+\tan \left( 60+A \right)-\tan \left( 60-A \right)\] is equal to \[3\tan 3A\]and hence option (a) is the correct answer.
Note: Students usually get confused and interchange between the sign of the identities \[\tan \left( x+y \right)=\dfrac{\tan x+\tan y}{1-\tan x\tan y}\]and \[\tan \left( x-y \right)=\dfrac{\tan x-\tan y}{1+\tan x\tan y}\]. Key point is to remember the right formula/identity.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Trending doubts
State and prove Bernoullis theorem class 11 physics CBSE

Raindrops are spherical because of A Gravitational class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

Why is steel more elastic than rubber class 11 physics CBSE

Explain why a There is no atmosphere on the moon b class 11 physics CBSE
