
The expression \[{\mathbf{lo}}{{\mathbf{g}}_{\mathbf{p}}}\]\[{\log _p}\sqrt[p]{{\sqrt[p]{{\sqrt[p]{{............\sqrt[p]{p}}}}}}}\], where \[p \geqslant 2,\]\[p \in N\]\[;n \in N\] when simplified is
A. Independent of p
B. Independent of p and of n
C. Dependent on both p and n
D. Positive
Answer
586.8k+ views
Hint: In this we do not simplify the whole question while we simplify first the radical term I,e.
The term which contain ‘p’ terms simplified as
\[\sqrt[p]{{\sqrt[p]{{\sqrt[p]{{.........\sqrt[p]{p}}}}}}}\] (n times radical sign)
\[ = {\left( {{{\left( {{{\left( {{{\left( p \right)}^{\dfrac{1}{p}}}} \right)}^{\dfrac{1}{p}}}} \right)}^{\dfrac{1}{p}}}} \right)^{\dfrac{1}{p}}}\](n times)
According to the property:
\[{\left( {{x^a}} \right)^b}\, = \,{x^{ab}}\]
Complete step by step solution:
Simplifying from inside
\[ \Rightarrow {\log _p}\,{\log _p}\sqrt[p]{{\sqrt[p]{{\sqrt[p]{{......\sqrt[p]{p}}}}}}}\]
\[ \Rightarrow {\log _p}\,{\log _p}{\left( {{{\left( {{{\left( {{{\left( {{{\left( p \right)}^{\dfrac{1}{p}}}} \right)}^{^{\dfrac{1}{p}}}}} \right)}^{^{\dfrac{1}{p}}}}} \right)}^{........}}} \right)^{\dfrac{1}{p}}}\](n times)
\[ \Rightarrow {\log _p}\,{\log _p}\,\left( {{{\left( p \right)}^{\dfrac{1}{{{p^{(x)}}}}}}} \right)\], according to the property of \[{\left( {{x^a}} \right)^b}\, = \,{x^{ab}}\].
\[ \Rightarrow {\log _p}\,{\log _{p\,}}{p^{\dfrac{1}{{{p^n}}}}}\]
\[ \Rightarrow {\log _p}\dfrac{1}{{{p^n}}}\left( {{{\log }_p}p} \right)\] (according to \[{\log _x}{x^a} = a{\log _x}x\]).
\[ \Rightarrow {\log _p}\dfrac{1}{{{p^n}}}(1)\] (\[{\log _x}x = 1\]).
\[ \Rightarrow {\log _p}1 - {\log _p}{p^n}\]
\[ \Rightarrow 0 - n{\log _p}p\]
\[ \Rightarrow 0 - n\]
\[ \Rightarrow \, - n\].
Thus option A is correct, which is Independent of p.
Note: Without simplifying the ‘p’ part and using properties of the question is possible but it is way long and hard. So, this method is the best suitable method.
The term which contain ‘p’ terms simplified as
\[\sqrt[p]{{\sqrt[p]{{\sqrt[p]{{.........\sqrt[p]{p}}}}}}}\] (n times radical sign)
\[ = {\left( {{{\left( {{{\left( {{{\left( p \right)}^{\dfrac{1}{p}}}} \right)}^{\dfrac{1}{p}}}} \right)}^{\dfrac{1}{p}}}} \right)^{\dfrac{1}{p}}}\](n times)
According to the property:
\[{\left( {{x^a}} \right)^b}\, = \,{x^{ab}}\]
Complete step by step solution:
Simplifying from inside
\[ \Rightarrow {\log _p}\,{\log _p}\sqrt[p]{{\sqrt[p]{{\sqrt[p]{{......\sqrt[p]{p}}}}}}}\]
\[ \Rightarrow {\log _p}\,{\log _p}{\left( {{{\left( {{{\left( {{{\left( {{{\left( p \right)}^{\dfrac{1}{p}}}} \right)}^{^{\dfrac{1}{p}}}}} \right)}^{^{\dfrac{1}{p}}}}} \right)}^{........}}} \right)^{\dfrac{1}{p}}}\](n times)
\[ \Rightarrow {\log _p}\,{\log _p}\,\left( {{{\left( p \right)}^{\dfrac{1}{{{p^{(x)}}}}}}} \right)\], according to the property of \[{\left( {{x^a}} \right)^b}\, = \,{x^{ab}}\].
\[ \Rightarrow {\log _p}\,{\log _{p\,}}{p^{\dfrac{1}{{{p^n}}}}}\]
\[ \Rightarrow {\log _p}\dfrac{1}{{{p^n}}}\left( {{{\log }_p}p} \right)\] (according to \[{\log _x}{x^a} = a{\log _x}x\]).
\[ \Rightarrow {\log _p}\dfrac{1}{{{p^n}}}(1)\] (\[{\log _x}x = 1\]).
\[ \Rightarrow {\log _p}1 - {\log _p}{p^n}\]
\[ \Rightarrow 0 - n{\log _p}p\]
\[ \Rightarrow 0 - n\]
\[ \Rightarrow \, - n\].
Thus option A is correct, which is Independent of p.
Note: Without simplifying the ‘p’ part and using properties of the question is possible but it is way long and hard. So, this method is the best suitable method.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

