
The expression \[{\mathbf{lo}}{{\mathbf{g}}_{\mathbf{p}}}\]\[{\log _p}\sqrt[p]{{\sqrt[p]{{\sqrt[p]{{............\sqrt[p]{p}}}}}}}\], where \[p \geqslant 2,\]\[p \in N\]\[;n \in N\] when simplified is
A. Independent of p
B. Independent of p and of n
C. Dependent on both p and n
D. Positive
Answer
570.3k+ views
Hint: In this we do not simplify the whole question while we simplify first the radical term I,e.
The term which contain ‘p’ terms simplified as
\[\sqrt[p]{{\sqrt[p]{{\sqrt[p]{{.........\sqrt[p]{p}}}}}}}\] (n times radical sign)
\[ = {\left( {{{\left( {{{\left( {{{\left( p \right)}^{\dfrac{1}{p}}}} \right)}^{\dfrac{1}{p}}}} \right)}^{\dfrac{1}{p}}}} \right)^{\dfrac{1}{p}}}\](n times)
According to the property:
\[{\left( {{x^a}} \right)^b}\, = \,{x^{ab}}\]
Complete step by step solution:
Simplifying from inside
\[ \Rightarrow {\log _p}\,{\log _p}\sqrt[p]{{\sqrt[p]{{\sqrt[p]{{......\sqrt[p]{p}}}}}}}\]
\[ \Rightarrow {\log _p}\,{\log _p}{\left( {{{\left( {{{\left( {{{\left( {{{\left( p \right)}^{\dfrac{1}{p}}}} \right)}^{^{\dfrac{1}{p}}}}} \right)}^{^{\dfrac{1}{p}}}}} \right)}^{........}}} \right)^{\dfrac{1}{p}}}\](n times)
\[ \Rightarrow {\log _p}\,{\log _p}\,\left( {{{\left( p \right)}^{\dfrac{1}{{{p^{(x)}}}}}}} \right)\], according to the property of \[{\left( {{x^a}} \right)^b}\, = \,{x^{ab}}\].
\[ \Rightarrow {\log _p}\,{\log _{p\,}}{p^{\dfrac{1}{{{p^n}}}}}\]
\[ \Rightarrow {\log _p}\dfrac{1}{{{p^n}}}\left( {{{\log }_p}p} \right)\] (according to \[{\log _x}{x^a} = a{\log _x}x\]).
\[ \Rightarrow {\log _p}\dfrac{1}{{{p^n}}}(1)\] (\[{\log _x}x = 1\]).
\[ \Rightarrow {\log _p}1 - {\log _p}{p^n}\]
\[ \Rightarrow 0 - n{\log _p}p\]
\[ \Rightarrow 0 - n\]
\[ \Rightarrow \, - n\].
Thus option A is correct, which is Independent of p.
Note: Without simplifying the ‘p’ part and using properties of the question is possible but it is way long and hard. So, this method is the best suitable method.
The term which contain ‘p’ terms simplified as
\[\sqrt[p]{{\sqrt[p]{{\sqrt[p]{{.........\sqrt[p]{p}}}}}}}\] (n times radical sign)
\[ = {\left( {{{\left( {{{\left( {{{\left( p \right)}^{\dfrac{1}{p}}}} \right)}^{\dfrac{1}{p}}}} \right)}^{\dfrac{1}{p}}}} \right)^{\dfrac{1}{p}}}\](n times)
According to the property:
\[{\left( {{x^a}} \right)^b}\, = \,{x^{ab}}\]
Complete step by step solution:
Simplifying from inside
\[ \Rightarrow {\log _p}\,{\log _p}\sqrt[p]{{\sqrt[p]{{\sqrt[p]{{......\sqrt[p]{p}}}}}}}\]
\[ \Rightarrow {\log _p}\,{\log _p}{\left( {{{\left( {{{\left( {{{\left( {{{\left( p \right)}^{\dfrac{1}{p}}}} \right)}^{^{\dfrac{1}{p}}}}} \right)}^{^{\dfrac{1}{p}}}}} \right)}^{........}}} \right)^{\dfrac{1}{p}}}\](n times)
\[ \Rightarrow {\log _p}\,{\log _p}\,\left( {{{\left( p \right)}^{\dfrac{1}{{{p^{(x)}}}}}}} \right)\], according to the property of \[{\left( {{x^a}} \right)^b}\, = \,{x^{ab}}\].
\[ \Rightarrow {\log _p}\,{\log _{p\,}}{p^{\dfrac{1}{{{p^n}}}}}\]
\[ \Rightarrow {\log _p}\dfrac{1}{{{p^n}}}\left( {{{\log }_p}p} \right)\] (according to \[{\log _x}{x^a} = a{\log _x}x\]).
\[ \Rightarrow {\log _p}\dfrac{1}{{{p^n}}}(1)\] (\[{\log _x}x = 1\]).
\[ \Rightarrow {\log _p}1 - {\log _p}{p^n}\]
\[ \Rightarrow 0 - n{\log _p}p\]
\[ \Rightarrow 0 - n\]
\[ \Rightarrow \, - n\].
Thus option A is correct, which is Independent of p.
Note: Without simplifying the ‘p’ part and using properties of the question is possible but it is way long and hard. So, this method is the best suitable method.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

