
The expression $3\left[ {{\sin }^{4}}\left\{ \dfrac{3\pi }{2}-\alpha \right\}+{{\sin }^{4}}\left( 3\pi +\alpha \right) \right]-2\left[ {{\sin }^{6}}\left\{ \dfrac{\pi }{2}+\alpha \right\}+{{\sin }^{6}}\left( 5\pi -\alpha \right) \right]$ is equal to:
A. 0
B. 1
C. 3
D. None
Answer
588.9k+ views
Hint: For the above question we will use the quadrant properties of the trigonometric function. We know that in $I{{I}^{nd}}$ and ${{I}^{st}}$ quadrant $\sin \theta $ is always positive otherwise it is negative. Also, we will use the identity as follows:
$\begin{align}
& \sin \left( \dfrac{\pi }{2}+\theta \right)=\cos \theta \\
& \sin \left( \dfrac{3\pi }{2}-\theta \right)=-\cos \theta \\
\end{align}$
So, by using the above properties and identity we will get the value of the expression.
Complete step-by-step answer:
We have been asked to find the value of the expression,
$3\left[ {{\sin }^{4}}\left\{ \dfrac{3\pi }{2}-\alpha \right\}+{{\sin }^{4}}\left( 3\pi +\alpha \right) \right]-2\left[ {{\sin }^{6}}\left\{ \dfrac{\pi }{2}+\alpha \right\}+{{\sin }^{6}}\left( 5\pi -\alpha \right) \right]$
We know that $\sin \left( \dfrac{3\pi }{2}-\theta \right)$ lies in the $II{{I}^{rd}}$quadrant and equals to $\left( -\cos \theta \right)$.
$\Rightarrow {{\sin }^{4}}\left( \dfrac{3\pi }{2}-\alpha \right)={{\left( -\cos \alpha \right)}^{4}}={{\cos }^{4}}\alpha $
Again, we know that \[\sin \left( 3\pi +\theta \right)\] lies in the $II{{I}^{rd}}$quadrant and equals $-\sin \theta $.
$\Rightarrow {{\sin }^{4}}\left( 3\pi +\alpha \right)={{\left( -\sin \alpha \right)}^{4}}={{\sin }^{4}}\alpha $
We know that $\sin \left( \dfrac{\pi }{2}+\theta \right)$ lies in the $I{{I}^{nd}}$ quadrant and equals to $\cos \theta $.
$\Rightarrow {{\sin }^{6}}\left( \dfrac{\pi }{2}+d \right)={{\left( \cos \alpha \right)}^{6}}={{\cos }^{6}}\alpha $
Also, we know that $\sin \left( \pi -\theta \right)$ lies in the $I{{I}^{nd}}$ quadrant and equals $\sin \theta $.
$\Rightarrow {{\sin }^{6}}\left( 5\pi -\alpha \right)={{\left( \sin \alpha \right)}^{6}}={{\sin }^{6}}\alpha $
On substituting these values in the given expression, we get,
$=3\left[ {{\cos }^{4}}\alpha +{{\sin }^{4}}\alpha \right]-2\left[ {{\cos }^{6}}\alpha +{{\sin }^{6}}\alpha \right]$
Now, using the identity as follows;
$\begin{align}
& {{a}^{4}}+{{b}^{4}}={{\left( {{a}^{2}}+{{b}^{2}} \right)}^{2}}-2{{a}^{2}}{{b}^{2}}\ and \\
& {{a}^{6}}+{{b}^{6}}={{\left( {{a}^{2}}+{{b}^{2}} \right)}^{3}}-3{{a}^{2}}{{b}^{2}}\left( {{a}^{2}}+{{b}^{2}} \right) \\
& =3\left[ {{\left( {{\cos }^{2}}\alpha +{{\sin }^{2}}\alpha \right)}^{2}}-2{{\cos }^{2}}\alpha {{\sin }^{2}}\alpha \right]-2\left[ {{\left( {{\cos }^{2}}\alpha +{{\sin }^{2}}\alpha \right)}^{3}}-3{{\cos }^{2}}\alpha {{\sin }^{2}}\alpha \times \left( {{\cos }^{2}}\alpha +{{\sin }^{2}}\alpha \right) \right] \\
\end{align}$Since, we know the trigonometric identity ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$.
$\begin{align}
& \Rightarrow 3\left[ {{\left( 1 \right)}^{2}}-2{{\cos }^{2}}\alpha {{\sin }^{2}}\alpha \right]-2\left[ {{\left( 1 \right)}^{3}}-3{{\cos }^{2}}\alpha {{\sin }^{2}}\alpha \left( 1 \right) \right] \\
& =3-6{{\cos }^{2}}\alpha {{\sin }^{2}}\alpha -2+6{{\cos }^{2}}\alpha {{\sin }^{2}}\alpha \\
& =\left( 3-2 \right)-6{{\cos }^{2}}\alpha {{\sin }^{2}}\alpha +6{{\cos }^{2}}\alpha {{\sin }^{2}}\alpha \\
& =1 \\
\end{align}$
Hence, the given expression is equal to 1.
Therefore, the correct option is option B.
Note: Be careful while using the trigonometric properties and their identities also take care of the sign mistake during calculation in each step.
Also, remember the property that, $\sin \left( \dfrac{\left( 2n+1 \right)\pi }{2}+\theta \right)={{\left( -1 \right)}^{n}}\cos \theta $ where ‘n’ is any whole number and $\sin \left( n\pi +\theta \right)={{\left( -1 \right)}^{n}}\sin \theta $. These properties will help you in these types of questions.
$\begin{align}
& \sin \left( \dfrac{\pi }{2}+\theta \right)=\cos \theta \\
& \sin \left( \dfrac{3\pi }{2}-\theta \right)=-\cos \theta \\
\end{align}$
So, by using the above properties and identity we will get the value of the expression.
Complete step-by-step answer:
We have been asked to find the value of the expression,
$3\left[ {{\sin }^{4}}\left\{ \dfrac{3\pi }{2}-\alpha \right\}+{{\sin }^{4}}\left( 3\pi +\alpha \right) \right]-2\left[ {{\sin }^{6}}\left\{ \dfrac{\pi }{2}+\alpha \right\}+{{\sin }^{6}}\left( 5\pi -\alpha \right) \right]$
We know that $\sin \left( \dfrac{3\pi }{2}-\theta \right)$ lies in the $II{{I}^{rd}}$quadrant and equals to $\left( -\cos \theta \right)$.
$\Rightarrow {{\sin }^{4}}\left( \dfrac{3\pi }{2}-\alpha \right)={{\left( -\cos \alpha \right)}^{4}}={{\cos }^{4}}\alpha $
Again, we know that \[\sin \left( 3\pi +\theta \right)\] lies in the $II{{I}^{rd}}$quadrant and equals $-\sin \theta $.
$\Rightarrow {{\sin }^{4}}\left( 3\pi +\alpha \right)={{\left( -\sin \alpha \right)}^{4}}={{\sin }^{4}}\alpha $
We know that $\sin \left( \dfrac{\pi }{2}+\theta \right)$ lies in the $I{{I}^{nd}}$ quadrant and equals to $\cos \theta $.
$\Rightarrow {{\sin }^{6}}\left( \dfrac{\pi }{2}+d \right)={{\left( \cos \alpha \right)}^{6}}={{\cos }^{6}}\alpha $
Also, we know that $\sin \left( \pi -\theta \right)$ lies in the $I{{I}^{nd}}$ quadrant and equals $\sin \theta $.
$\Rightarrow {{\sin }^{6}}\left( 5\pi -\alpha \right)={{\left( \sin \alpha \right)}^{6}}={{\sin }^{6}}\alpha $
On substituting these values in the given expression, we get,
$=3\left[ {{\cos }^{4}}\alpha +{{\sin }^{4}}\alpha \right]-2\left[ {{\cos }^{6}}\alpha +{{\sin }^{6}}\alpha \right]$
Now, using the identity as follows;
$\begin{align}
& {{a}^{4}}+{{b}^{4}}={{\left( {{a}^{2}}+{{b}^{2}} \right)}^{2}}-2{{a}^{2}}{{b}^{2}}\ and \\
& {{a}^{6}}+{{b}^{6}}={{\left( {{a}^{2}}+{{b}^{2}} \right)}^{3}}-3{{a}^{2}}{{b}^{2}}\left( {{a}^{2}}+{{b}^{2}} \right) \\
& =3\left[ {{\left( {{\cos }^{2}}\alpha +{{\sin }^{2}}\alpha \right)}^{2}}-2{{\cos }^{2}}\alpha {{\sin }^{2}}\alpha \right]-2\left[ {{\left( {{\cos }^{2}}\alpha +{{\sin }^{2}}\alpha \right)}^{3}}-3{{\cos }^{2}}\alpha {{\sin }^{2}}\alpha \times \left( {{\cos }^{2}}\alpha +{{\sin }^{2}}\alpha \right) \right] \\
\end{align}$Since, we know the trigonometric identity ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$.
$\begin{align}
& \Rightarrow 3\left[ {{\left( 1 \right)}^{2}}-2{{\cos }^{2}}\alpha {{\sin }^{2}}\alpha \right]-2\left[ {{\left( 1 \right)}^{3}}-3{{\cos }^{2}}\alpha {{\sin }^{2}}\alpha \left( 1 \right) \right] \\
& =3-6{{\cos }^{2}}\alpha {{\sin }^{2}}\alpha -2+6{{\cos }^{2}}\alpha {{\sin }^{2}}\alpha \\
& =\left( 3-2 \right)-6{{\cos }^{2}}\alpha {{\sin }^{2}}\alpha +6{{\cos }^{2}}\alpha {{\sin }^{2}}\alpha \\
& =1 \\
\end{align}$
Hence, the given expression is equal to 1.
Therefore, the correct option is option B.
Note: Be careful while using the trigonometric properties and their identities also take care of the sign mistake during calculation in each step.
Also, remember the property that, $\sin \left( \dfrac{\left( 2n+1 \right)\pi }{2}+\theta \right)={{\left( -1 \right)}^{n}}\cos \theta $ where ‘n’ is any whole number and $\sin \left( n\pi +\theta \right)={{\left( -1 \right)}^{n}}\sin \theta $. These properties will help you in these types of questions.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

