
The exponent of 2 in the prime factorization of 144 is
(A) 2
(B) 4
(C) 1
(D) 6
Answer
440.9k+ views
Hint: First of all, break 144 as the multiplication of small integers. We know the property that when nothing is given then the exponent of that number is 1. We also know the formula for simplification when two numbers with the same base and different exponents, \[{{x}^{a}}\times {{x}^{b}}={{x}^{a+b}}\] . Now, simplify it further and get the exponent of 2.
Complete step-by-step solution
According to the question, we are given a number and we have to find the exponent of 2 in its prime factorization.
Here, first of all, we need the prime factorization of 144.
We know that prime factorization is the breakdown of an integer into smaller integers. In other words, we can say that in the prime factorization method, an integer is written as the multiplication of small integers.
Also, we can say that the exponent refers to the number of times a number is multiplied by itself.
For prime factorization of 144, we need its factors.
\[\begin{align}
& 2\left| \!{\underline {\,
144 \,}} \right. \\
& 2\left| \!{\underline {\,
72 \,}} \right. \\
& 2\left| \!{\underline {\,
36 \,}} \right. \, \\
& 2\left| \!{\underline {\,
18 \,}} \right. \\
& 3\left| \!{\underline {\,
9 \,}} \right. \\
& \,\,\left| \!{\underline {\,
3 \,}} \right. \\
\end{align}\]
From the above, we can observe that
144 = \[2\times 2\times 2\times 2\times 3\times 3\] …………………………………………(1)
We know the property that when nothing is given then the exponent of that number is 1 ……………………………………(2)
We also know the formula for simplification when two numbers with the same base and different exponents, \[{{x}^{a}}\times {{x}^{b}}={{x}^{a+b}}\] …………………………………………………………………(3)
Now, from equation (1), equation (2), and equation (3), we get
144 = \[{{2}^{1}}\times {{2}^{1}}\times {{2}^{1}}\times {{2}^{1}}\times {{3}^{1}}\times {{3}^{1}}={{2}^{1+1+1+1}}\times {{3}^{1+1}}={{2}^{4}}\times {{3}^{2}}\] ……………………………………………(4)
From the above equation, we have the number which is the exponent of 2.
Therefore, the exponent of 2 in the prime factorization of 144 is 4. Hence, the correct option is (B).
Note: Here, one point should be kept into consideration. The exponent is equal to 1 when nothing is given. For instance, if we have a number a. Since nothing is mentioned here, So the exponent of a is 1.
Complete step-by-step solution
According to the question, we are given a number and we have to find the exponent of 2 in its prime factorization.
Here, first of all, we need the prime factorization of 144.
We know that prime factorization is the breakdown of an integer into smaller integers. In other words, we can say that in the prime factorization method, an integer is written as the multiplication of small integers.
Also, we can say that the exponent refers to the number of times a number is multiplied by itself.
For prime factorization of 144, we need its factors.
\[\begin{align}
& 2\left| \!{\underline {\,
144 \,}} \right. \\
& 2\left| \!{\underline {\,
72 \,}} \right. \\
& 2\left| \!{\underline {\,
36 \,}} \right. \, \\
& 2\left| \!{\underline {\,
18 \,}} \right. \\
& 3\left| \!{\underline {\,
9 \,}} \right. \\
& \,\,\left| \!{\underline {\,
3 \,}} \right. \\
\end{align}\]
From the above, we can observe that
144 = \[2\times 2\times 2\times 2\times 3\times 3\] …………………………………………(1)
We know the property that when nothing is given then the exponent of that number is 1 ……………………………………(2)
We also know the formula for simplification when two numbers with the same base and different exponents, \[{{x}^{a}}\times {{x}^{b}}={{x}^{a+b}}\] …………………………………………………………………(3)
Now, from equation (1), equation (2), and equation (3), we get
144 = \[{{2}^{1}}\times {{2}^{1}}\times {{2}^{1}}\times {{2}^{1}}\times {{3}^{1}}\times {{3}^{1}}={{2}^{1+1+1+1}}\times {{3}^{1+1}}={{2}^{4}}\times {{3}^{2}}\] ……………………………………………(4)
From the above equation, we have the number which is the exponent of 2.
Therefore, the exponent of 2 in the prime factorization of 144 is 4. Hence, the correct option is (B).
Note: Here, one point should be kept into consideration. The exponent is equal to 1 when nothing is given. For instance, if we have a number a. Since nothing is mentioned here, So the exponent of a is 1.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

Trending doubts
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE

List some examples of Rabi and Kharif crops class 8 biology CBSE

What is the feminine gender of a stag class 8 english CBSE

How many ounces are in 500 mL class 8 maths CBSE

Summary of the poem Where the Mind is Without Fear class 8 english CBSE

How many ten lakhs are in one crore-class-8-maths-CBSE
