
The exponent of 12 in $100!$ is
A) 32
B) 48
C) 97
D) None of these
Answer
544.5k+ views
Hint:
Here, we will rewrite the given factorial in the form of the prime powers. We will then use the formula of the exponent of any prime number in factorial to find the exponent of 2 and 3 in the given factorial. We will solve it further to find the exponent in the given factorial.
Formula Used:
The exponent of any prime number $p$ in $n!$ is given by the formula $\left[ {\dfrac{n}{p}} \right] + \left[ {\dfrac{n}{{{p^2}}}} \right] + \left[ {\dfrac{n}{{{p^3}}}} \right] + ..... + \left[ {\dfrac{n}{{{p^k}}}} \right]$ where $k$ must be chosen such that ${p^{k + 1}} > n$ and $\left[. \right]$ represents the greatest integer function.
Complete step by step solution:
We are given a factorial $100!$.
We will write the given factorial in the form of prime powers as $12 = {2^2} \times 3$.
First, we will consider the factorial in terms of the power of 2.
Now using the formula $\left[ {\dfrac{n}{p}} \right] + \left[ {\dfrac{n}{{{p^2}}}} \right] + \left[ {\dfrac{n}{{{p^3}}}} \right] + ..... + \left[ {\dfrac{n}{{{p^k}}}} \right]$, we get
The exponent of 2 in $100! = \left[ {\dfrac{{100}}{2}} \right] + \left[ {\dfrac{{100}}{{{2^2}}}} \right] + \left[ {\dfrac{{100}}{{{2^3}}}} \right] + \left[ {\dfrac{{100}}{{{2^4}}}} \right] + \left[ {\dfrac{{100}}{{{2^5}}}} \right] + \left[ {\dfrac{{100}}{{{2^6}}}} \right]$
Applying the exponents on the terms of the denominator, we get
$ \Rightarrow $ The exponent of 2 in $100! = \left[ {\dfrac{{100}}{2}} \right] + \left[ {\dfrac{{100}}{4}} \right] + \left[ {\dfrac{{100}}{8}} \right] + \left[ {\dfrac{{100}}{{16}}} \right] + \left[ {\dfrac{{100}}{{32}}} \right] + \left[ {\dfrac{{100}}{{64}}} \right]$
Simplifying the fractions, we get
$ \Rightarrow $ The exponent of 2 in $100! = \left[ {50} \right] + \left[ {25} \right] + \left[ {12.5} \right] + \left[ {6.25} \right] + \left[ {3.125} \right] + \left[ {1.5625} \right]$
Since $\left[ . \right]$ represents the greatest integer function, we get
$ \Rightarrow $ The exponent of 2 in $100! = 50 + 25 + 12 + 6 + 3 + 1$
Adding the terms, we get
$ \Rightarrow $ The exponent of 2 in $100! = 97$
Since the exponent of $2$ is in the power of $2$, we get
$ \Rightarrow $ The exponent of 2 in $100! = \dfrac{{97}}{2}$
Dividing the terms, we get
$ \Rightarrow $The exponent of 2 in $100! = 48.5 \approx 48$
Now using the formula $\left[ {\dfrac{n}{p}} \right] + \left[ {\dfrac{n}{{{p^2}}}} \right] + \left[ {\dfrac{n}{{{p^3}}}} \right] + ..... + \left[ {\dfrac{n}{{{p^k}}}} \right]$, we get
$ \Rightarrow $ The exponent of 3 in $100! = \left[ {\dfrac{{100}}{3}} \right] + \left[ {\dfrac{{100}}{{{3^2}}}} \right] + \left[ {\dfrac{{100}}{{{3^3}}}} \right] + \left[ {\dfrac{{100}}{{{3^4}}}} \right]$
Applying the exponents on the terms of the denominator, we get
$ \Rightarrow $ The exponent of 3 in $100! = \left[ {\dfrac{{100}}{3}} \right] + \left[ {\dfrac{{100}}{9}} \right] + \left[ {\dfrac{{100}}{{27}}} \right] + \left[ {\dfrac{{100}}{{81}}} \right]$
Simplifying the fractions, we get
$ \Rightarrow $ The exponent of 3 in $100! = \left[ {33.33} \right] + \left[ {11.11} \right] + \left[ {3.7037} \right] + \left[ {1.2345} \right]$
Since $\left[ . \right]$ represents the greatest integer function, we get
$ \Rightarrow $ The exponent of 3 in $100! = 33 + 11 + 3 + 1$
Adding the terms, we get
$ \Rightarrow $ The exponent of 3 in $100! = 48$
We will get the exponent as 12 if the power of 2 occurs twice and the power of 3 occurs once.
Thus 48 times the exponent of 12 in the factorial $100!$.
Therefore, the exponent of 12 in $100!$ is 48.
Thus, option (B) is the correct answer.
Note:
We should note that the exponent of any prime number $p$ in $n!$ is applicable only in the case of prime numbers. If the given number is a composite number then it has to be written in the form of a prime number. A prime is a number which has only 2 factors that is the number itself and 1. The function that is rounding off the real number down to the integer less than the number is known as the greatest integer function.
Here, we will rewrite the given factorial in the form of the prime powers. We will then use the formula of the exponent of any prime number in factorial to find the exponent of 2 and 3 in the given factorial. We will solve it further to find the exponent in the given factorial.
Formula Used:
The exponent of any prime number $p$ in $n!$ is given by the formula $\left[ {\dfrac{n}{p}} \right] + \left[ {\dfrac{n}{{{p^2}}}} \right] + \left[ {\dfrac{n}{{{p^3}}}} \right] + ..... + \left[ {\dfrac{n}{{{p^k}}}} \right]$ where $k$ must be chosen such that ${p^{k + 1}} > n$ and $\left[. \right]$ represents the greatest integer function.
Complete step by step solution:
We are given a factorial $100!$.
We will write the given factorial in the form of prime powers as $12 = {2^2} \times 3$.
First, we will consider the factorial in terms of the power of 2.
Now using the formula $\left[ {\dfrac{n}{p}} \right] + \left[ {\dfrac{n}{{{p^2}}}} \right] + \left[ {\dfrac{n}{{{p^3}}}} \right] + ..... + \left[ {\dfrac{n}{{{p^k}}}} \right]$, we get
The exponent of 2 in $100! = \left[ {\dfrac{{100}}{2}} \right] + \left[ {\dfrac{{100}}{{{2^2}}}} \right] + \left[ {\dfrac{{100}}{{{2^3}}}} \right] + \left[ {\dfrac{{100}}{{{2^4}}}} \right] + \left[ {\dfrac{{100}}{{{2^5}}}} \right] + \left[ {\dfrac{{100}}{{{2^6}}}} \right]$
Applying the exponents on the terms of the denominator, we get
$ \Rightarrow $ The exponent of 2 in $100! = \left[ {\dfrac{{100}}{2}} \right] + \left[ {\dfrac{{100}}{4}} \right] + \left[ {\dfrac{{100}}{8}} \right] + \left[ {\dfrac{{100}}{{16}}} \right] + \left[ {\dfrac{{100}}{{32}}} \right] + \left[ {\dfrac{{100}}{{64}}} \right]$
Simplifying the fractions, we get
$ \Rightarrow $ The exponent of 2 in $100! = \left[ {50} \right] + \left[ {25} \right] + \left[ {12.5} \right] + \left[ {6.25} \right] + \left[ {3.125} \right] + \left[ {1.5625} \right]$
Since $\left[ . \right]$ represents the greatest integer function, we get
$ \Rightarrow $ The exponent of 2 in $100! = 50 + 25 + 12 + 6 + 3 + 1$
Adding the terms, we get
$ \Rightarrow $ The exponent of 2 in $100! = 97$
Since the exponent of $2$ is in the power of $2$, we get
$ \Rightarrow $ The exponent of 2 in $100! = \dfrac{{97}}{2}$
Dividing the terms, we get
$ \Rightarrow $The exponent of 2 in $100! = 48.5 \approx 48$
Now using the formula $\left[ {\dfrac{n}{p}} \right] + \left[ {\dfrac{n}{{{p^2}}}} \right] + \left[ {\dfrac{n}{{{p^3}}}} \right] + ..... + \left[ {\dfrac{n}{{{p^k}}}} \right]$, we get
$ \Rightarrow $ The exponent of 3 in $100! = \left[ {\dfrac{{100}}{3}} \right] + \left[ {\dfrac{{100}}{{{3^2}}}} \right] + \left[ {\dfrac{{100}}{{{3^3}}}} \right] + \left[ {\dfrac{{100}}{{{3^4}}}} \right]$
Applying the exponents on the terms of the denominator, we get
$ \Rightarrow $ The exponent of 3 in $100! = \left[ {\dfrac{{100}}{3}} \right] + \left[ {\dfrac{{100}}{9}} \right] + \left[ {\dfrac{{100}}{{27}}} \right] + \left[ {\dfrac{{100}}{{81}}} \right]$
Simplifying the fractions, we get
$ \Rightarrow $ The exponent of 3 in $100! = \left[ {33.33} \right] + \left[ {11.11} \right] + \left[ {3.7037} \right] + \left[ {1.2345} \right]$
Since $\left[ . \right]$ represents the greatest integer function, we get
$ \Rightarrow $ The exponent of 3 in $100! = 33 + 11 + 3 + 1$
Adding the terms, we get
$ \Rightarrow $ The exponent of 3 in $100! = 48$
We will get the exponent as 12 if the power of 2 occurs twice and the power of 3 occurs once.
Thus 48 times the exponent of 12 in the factorial $100!$.
Therefore, the exponent of 12 in $100!$ is 48.
Thus, option (B) is the correct answer.
Note:
We should note that the exponent of any prime number $p$ in $n!$ is applicable only in the case of prime numbers. If the given number is a composite number then it has to be written in the form of a prime number. A prime is a number which has only 2 factors that is the number itself and 1. The function that is rounding off the real number down to the integer less than the number is known as the greatest integer function.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

