
The expansion $\dfrac{{\sin \dfrac{{7\pi }}{{24}} + \sin \dfrac{{5\pi }}{{24}} + \sin \dfrac{{9\pi }}{{24}} + \sin \dfrac{{3\pi }}{{24}}}}{{\cos \dfrac{{7\pi }}{{24}} + \cos \dfrac{{5\pi }}{{24}} + \cos \dfrac{{9\pi }}{{24}} + \cos \dfrac{{3\pi }}{{24}}}}$
A. 1
B. $2 - \sqrt 3 $
C. $\sqrt 2 - 1$
D. $\dfrac{1}{{\sqrt 3 }}$
Answer
585.9k+ views
Hint: We will first simplify the given expression. Apply the formula$\sin A + \sin B = 2\sin \left( {\dfrac{{x + y}}{2}} \right)\cos \left( {\dfrac{{x - y}}{2}} \right)$ in the numerator and $\cos A + \cos B = 2\cos \left( {\dfrac{{x + y}}{2}} \right)\cos \left( {\dfrac{{x - y}}{2}} \right)$ in the denominator. Take the common terms out and then cancel the terms which are common in numerator and denominator. Substitute the known values to get the required answer.
Complete step-by-step answer:
We have to find the value of $\dfrac{{\sin \dfrac{{7\pi }}{{24}} + \sin \dfrac{{5\pi }}{{24}} + \sin \dfrac{{9\pi }}{{24}} + \sin \dfrac{{3\pi }}{{24}}}}{{\cos \dfrac{{7\pi }}{{24}} + \cos \dfrac{{5\pi }}{{24}} + \cos \dfrac{{9\pi }}{{24}} + \cos \dfrac{{3\pi }}{{24}}}}$
We will apply the formula $\sin A + \sin B = 2\sin \left( {\dfrac{{x + y}}{2}} \right)\cos \left( ={\dfrac{{x - y}}{2}} \right)$ and $\cos A + \cos B = 2\cos \left( {\dfrac{{x + y}}{2}} \right)\cos \left( {\dfrac{{x - y}}{2}} \right)$
=$\dfrac{{2\sin \left( {\dfrac{{7\pi }}{{24}} + \dfrac{{5\pi }}{{24}}} \right)\cos \left( {\dfrac{{7\pi }}{{24}} - \dfrac{{5\pi }}{{24}}} \right) + 2\sin \left( {\dfrac{{9\pi }}{{24}} + \dfrac{{3\pi }}{{24}}} \right)\cos \left( {\dfrac{{9\pi }}{{24}} - \dfrac{{3\pi }}{{24}}} \right)}}{{2\cos \left( {\dfrac{{7\pi }}{{24}} + \dfrac{{5\pi }}{{24}}} \right)\cos \left( {\dfrac{{7\pi }}{{24}} - \dfrac{{5\pi }}{{24}}} \right) + 2\cos \left( {\dfrac{{9\pi }}{{24}} + \dfrac{{3\pi }}{{24}}} \right)\cos \left( {\dfrac{{9\pi }}{{24}} - \dfrac{{3\pi }}{{24}}} \right)}}$
We will simplify the brackets.
=$\dfrac{{2\sin \left( {\dfrac{\pi }{2}} \right)\cos \left( {\dfrac{\pi }{{12}}} \right) + 2\sin \left( {\dfrac{\pi }{2}} \right)\cos \left( {\dfrac{\pi }{4}} \right)}}{{2\cos \left( {\dfrac{\pi }{2}} \right)\cos \left( {\dfrac{\pi }{{12}}} \right) + 2\cos \left( {\dfrac{\pi }{2}} \right)\cos \left( {\dfrac{\pi }{4}} \right)}}$
We will now take $2\sin \left( {\dfrac{\pi }{2}} \right)$ common from numerator and similarly, we can take $2\cos \left( {\dfrac{\pi }{2}} \right)$ common from denominator.
$
= \dfrac{{2\sin \left( {\dfrac{\pi }{2}} \right)\left( {\cos \left( {\dfrac{\pi }{{12}}} \right) + \cos \left( {\dfrac{\pi }{4}} \right)} \right)}}{{2\cos \left( {\dfrac{\pi }{2}} \right)\left( {\cos \left( {\dfrac{\pi }{{12}}} \right) + \cos \left( {\dfrac{\pi }{4}} \right)} \right)}} \\
= \dfrac{{\sin \left( {\dfrac{\pi }{2}} \right)}}{{\cos \left( {\dfrac{\pi }{2}} \right)}} \\
$
Now, we know that $\dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta $
Therefore, the above expression can be simplified as,
$\dfrac{{\sin \left( {\dfrac{\pi }{2}} \right)}}{{\cos \left( {\dfrac{\pi }{2}} \right)}} = \tan \dfrac{\pi }{2}$
And the value of $\tan \dfrac{\pi }{2}$ is not defined.
Hence, the value of the expression is not defined.
Note: The best way to solve these types of questions is to simplify the given expression using the trigonometric identities. Here, while applying the formula of sum of trigonometric ratios, we have taken the term together such that their sum is equal. For example, $\left( {\dfrac{{7\pi }}{{24}} + \dfrac{{5\pi }}{{24}}} \right) = \left( {\dfrac{{9\pi }}{{24}} + \dfrac{{3\pi }}{{24}}} \right) = \dfrac{\pi }{2}$
This helps to reduce calculations. Also, do not try to find the value of each term as it will be very time consuming.
Complete step-by-step answer:
We have to find the value of $\dfrac{{\sin \dfrac{{7\pi }}{{24}} + \sin \dfrac{{5\pi }}{{24}} + \sin \dfrac{{9\pi }}{{24}} + \sin \dfrac{{3\pi }}{{24}}}}{{\cos \dfrac{{7\pi }}{{24}} + \cos \dfrac{{5\pi }}{{24}} + \cos \dfrac{{9\pi }}{{24}} + \cos \dfrac{{3\pi }}{{24}}}}$
We will apply the formula $\sin A + \sin B = 2\sin \left( {\dfrac{{x + y}}{2}} \right)\cos \left( ={\dfrac{{x - y}}{2}} \right)$ and $\cos A + \cos B = 2\cos \left( {\dfrac{{x + y}}{2}} \right)\cos \left( {\dfrac{{x - y}}{2}} \right)$
=$\dfrac{{2\sin \left( {\dfrac{{7\pi }}{{24}} + \dfrac{{5\pi }}{{24}}} \right)\cos \left( {\dfrac{{7\pi }}{{24}} - \dfrac{{5\pi }}{{24}}} \right) + 2\sin \left( {\dfrac{{9\pi }}{{24}} + \dfrac{{3\pi }}{{24}}} \right)\cos \left( {\dfrac{{9\pi }}{{24}} - \dfrac{{3\pi }}{{24}}} \right)}}{{2\cos \left( {\dfrac{{7\pi }}{{24}} + \dfrac{{5\pi }}{{24}}} \right)\cos \left( {\dfrac{{7\pi }}{{24}} - \dfrac{{5\pi }}{{24}}} \right) + 2\cos \left( {\dfrac{{9\pi }}{{24}} + \dfrac{{3\pi }}{{24}}} \right)\cos \left( {\dfrac{{9\pi }}{{24}} - \dfrac{{3\pi }}{{24}}} \right)}}$
We will simplify the brackets.
=$\dfrac{{2\sin \left( {\dfrac{\pi }{2}} \right)\cos \left( {\dfrac{\pi }{{12}}} \right) + 2\sin \left( {\dfrac{\pi }{2}} \right)\cos \left( {\dfrac{\pi }{4}} \right)}}{{2\cos \left( {\dfrac{\pi }{2}} \right)\cos \left( {\dfrac{\pi }{{12}}} \right) + 2\cos \left( {\dfrac{\pi }{2}} \right)\cos \left( {\dfrac{\pi }{4}} \right)}}$
We will now take $2\sin \left( {\dfrac{\pi }{2}} \right)$ common from numerator and similarly, we can take $2\cos \left( {\dfrac{\pi }{2}} \right)$ common from denominator.
$
= \dfrac{{2\sin \left( {\dfrac{\pi }{2}} \right)\left( {\cos \left( {\dfrac{\pi }{{12}}} \right) + \cos \left( {\dfrac{\pi }{4}} \right)} \right)}}{{2\cos \left( {\dfrac{\pi }{2}} \right)\left( {\cos \left( {\dfrac{\pi }{{12}}} \right) + \cos \left( {\dfrac{\pi }{4}} \right)} \right)}} \\
= \dfrac{{\sin \left( {\dfrac{\pi }{2}} \right)}}{{\cos \left( {\dfrac{\pi }{2}} \right)}} \\
$
Now, we know that $\dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta $
Therefore, the above expression can be simplified as,
$\dfrac{{\sin \left( {\dfrac{\pi }{2}} \right)}}{{\cos \left( {\dfrac{\pi }{2}} \right)}} = \tan \dfrac{\pi }{2}$
And the value of $\tan \dfrac{\pi }{2}$ is not defined.
Hence, the value of the expression is not defined.
Note: The best way to solve these types of questions is to simplify the given expression using the trigonometric identities. Here, while applying the formula of sum of trigonometric ratios, we have taken the term together such that their sum is equal. For example, $\left( {\dfrac{{7\pi }}{{24}} + \dfrac{{5\pi }}{{24}}} \right) = \left( {\dfrac{{9\pi }}{{24}} + \dfrac{{3\pi }}{{24}}} \right) = \dfrac{\pi }{2}$
This helps to reduce calculations. Also, do not try to find the value of each term as it will be very time consuming.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

