
The equilibrium constant ( ${K_p}$) for the decomposition of gaseous ${H_2}O$ . ${H_2}O(g) \rightleftharpoons {H_2}(g) + \dfrac{1}{2}{O_2}(g)$ is related to degree of dissociation ( $\alpha $ ) at a total pressure p is given by,
A.${K_p} = \dfrac{{{\alpha ^3}{p^{\dfrac{1}{2}}}}}{{\left( {1 + \alpha } \right){{\left( {2 + \alpha } \right)}^{\dfrac{1}{2}}}}}$
B.${K_p} = \dfrac{{{\alpha ^3}{p^{\dfrac{3}{2}}}}}{{\left( {1 + \alpha } \right){{\left( {2 + \alpha } \right)}^{\dfrac{1}{2}}}}}$
C.${K_p} = \dfrac{{{\alpha ^{\dfrac{3}{2}}}{p^2}}}{{\left( {1 + \alpha } \right){{\left( {2 + \alpha } \right)}^{\dfrac{1}{2}}}}}$
D.${K_p} = \dfrac{{{\alpha ^{\dfrac{3}{2}}}{p^{\dfrac{1}{2}}}}}{{\left( {1 - \alpha } \right){{\left( {2 + \alpha } \right)}^{\dfrac{1}{2}}}}}$
Answer
547.5k+ views
Hint: ${K_p}$ is the equilibrium constant written in terms of partial pressure of reactants and products. So in order to solve this question, we need to calculate partial pressure of each component in terms of degree of dissociation.
Complete step by step answer:
The given reaction is,
${H_2}O(g) \rightleftharpoons {H_2}(g) + \dfrac{1}{2}{O_2}(g)$
${K_p}$ for this reaction can be written as,
\[{K_p} = \dfrac{{\left( {p{H_2}} \right){{\left( {p{O_2}} \right)}^{\dfrac{1}{2}}}}}{{\left( {p{H_2}O} \right)}}\]
Where $p{H_2}$ is partial pressure of hydrogen gas, $p{O_2}$ is partial pressure of oxygen gas and $p{H_2}O$ is partial pressure of water vapour.
Let X be the initial pressure of water vapour. At this time, pressure of hydrogen gas and oxygen gas are zero. At equilibrium, pressure of water vapour, hydrogen gas and oxygen gas are $X(1 - \alpha )$ , $X\alpha $ and $\dfrac{{X\alpha }}{2}$ respectively.
$
{H_2}O(g) \rightleftharpoons {H_2}(g) + \dfrac{1}{2}{O_2}(g) \\
{\text{X 0 0 (at t = 0)}} \\
{\text{X(1 - }}\alpha {\text{) X}}\alpha {\text{ }}\dfrac{{X\alpha }}{2}{\text{ (at equilibrium)}} \\
$
Given that total pressure is p. Hence we can write,
$p = X(1 - \alpha ) + X\alpha + \dfrac{{X\alpha }}{2} = X + \dfrac{{X\alpha }}{2} = \dfrac{{X(2 + \alpha )}}{2}$
From this we can write,
$X = \dfrac{{2p}}{{2 + \alpha }}$
Now let us substitute the values of partial pressures on the equation of ${K_p}$ .
\[{K_p} = \dfrac{{\left( {X\alpha } \right){{\left( {\dfrac{{X\alpha }}{2}} \right)}^{\dfrac{1}{2}}}}}{{X(1 - \alpha )}} = \left( {\dfrac{{{X^{\dfrac{3}{2}}}{\alpha ^{\dfrac{3}{2}}}}}{{{2^{\dfrac{1}{2}}}X(1 - \alpha )}}} \right) = \left( {\dfrac{{{X^{\dfrac{1}{2}}}{\alpha ^{\dfrac{3}{2}}}}}{{{2^{\dfrac{1}{2}}}(1 - \alpha )}}} \right)\]
Now substitute the value of X, $X = \dfrac{{2p}}{{2 + \alpha }}$
\[{K_p} = \left( {\dfrac{{{{\left( {\dfrac{{p\alpha }}{{(2 + \alpha )}}} \right)}^{\dfrac{1}{2}}}{\alpha ^{\dfrac{3}{2}}}}}{{{2^{\dfrac{1}{2}}}(1 - \alpha )}}} \right)\]
Simplifying the equation we get,
\[{K_p} = \dfrac{{{\alpha ^{\dfrac{3}{2}}}{p^{\dfrac{1}{2}}}}}{{\left( {1 - \alpha } \right){{\left( {2 + \alpha } \right)}^{\dfrac{1}{2}}}}}\]
Therefore, the correct option is D.
Note:
We can also do the calculation by first substituting the value of X on partial pressure of each component and then substituting the values on the equation of ${K_p}$ .
Partial pressure of water vapour in terms of degree of dissociation can be written as,
$p{H_2}O = X(1 - \alpha ) = \dfrac{{2p}}{{2 + \alpha }}(1 - \alpha )$
Partial pressure of hydrogen gas can be written as,
$p{H_2} = X\alpha = \dfrac{{2p\alpha }}{{2 + \alpha }}$
Partial pressure of oxygen gas can be written as,
$p{O_2} = \dfrac{{X\alpha }}{2} = \dfrac{{2p\alpha }}{{2\left( {2 + \alpha } \right)}} = \dfrac{{p\alpha }}{{\left( {2 + \alpha } \right)}}$
When we substitute these values on the equation of ${K_p}$ , we will get the same answer.
Complete step by step answer:
The given reaction is,
${H_2}O(g) \rightleftharpoons {H_2}(g) + \dfrac{1}{2}{O_2}(g)$
${K_p}$ for this reaction can be written as,
\[{K_p} = \dfrac{{\left( {p{H_2}} \right){{\left( {p{O_2}} \right)}^{\dfrac{1}{2}}}}}{{\left( {p{H_2}O} \right)}}\]
Where $p{H_2}$ is partial pressure of hydrogen gas, $p{O_2}$ is partial pressure of oxygen gas and $p{H_2}O$ is partial pressure of water vapour.
Let X be the initial pressure of water vapour. At this time, pressure of hydrogen gas and oxygen gas are zero. At equilibrium, pressure of water vapour, hydrogen gas and oxygen gas are $X(1 - \alpha )$ , $X\alpha $ and $\dfrac{{X\alpha }}{2}$ respectively.
$
{H_2}O(g) \rightleftharpoons {H_2}(g) + \dfrac{1}{2}{O_2}(g) \\
{\text{X 0 0 (at t = 0)}} \\
{\text{X(1 - }}\alpha {\text{) X}}\alpha {\text{ }}\dfrac{{X\alpha }}{2}{\text{ (at equilibrium)}} \\
$
Given that total pressure is p. Hence we can write,
$p = X(1 - \alpha ) + X\alpha + \dfrac{{X\alpha }}{2} = X + \dfrac{{X\alpha }}{2} = \dfrac{{X(2 + \alpha )}}{2}$
From this we can write,
$X = \dfrac{{2p}}{{2 + \alpha }}$
Now let us substitute the values of partial pressures on the equation of ${K_p}$ .
\[{K_p} = \dfrac{{\left( {X\alpha } \right){{\left( {\dfrac{{X\alpha }}{2}} \right)}^{\dfrac{1}{2}}}}}{{X(1 - \alpha )}} = \left( {\dfrac{{{X^{\dfrac{3}{2}}}{\alpha ^{\dfrac{3}{2}}}}}{{{2^{\dfrac{1}{2}}}X(1 - \alpha )}}} \right) = \left( {\dfrac{{{X^{\dfrac{1}{2}}}{\alpha ^{\dfrac{3}{2}}}}}{{{2^{\dfrac{1}{2}}}(1 - \alpha )}}} \right)\]
Now substitute the value of X, $X = \dfrac{{2p}}{{2 + \alpha }}$
\[{K_p} = \left( {\dfrac{{{{\left( {\dfrac{{p\alpha }}{{(2 + \alpha )}}} \right)}^{\dfrac{1}{2}}}{\alpha ^{\dfrac{3}{2}}}}}{{{2^{\dfrac{1}{2}}}(1 - \alpha )}}} \right)\]
Simplifying the equation we get,
\[{K_p} = \dfrac{{{\alpha ^{\dfrac{3}{2}}}{p^{\dfrac{1}{2}}}}}{{\left( {1 - \alpha } \right){{\left( {2 + \alpha } \right)}^{\dfrac{1}{2}}}}}\]
Therefore, the correct option is D.
Note:
We can also do the calculation by first substituting the value of X on partial pressure of each component and then substituting the values on the equation of ${K_p}$ .
Partial pressure of water vapour in terms of degree of dissociation can be written as,
$p{H_2}O = X(1 - \alpha ) = \dfrac{{2p}}{{2 + \alpha }}(1 - \alpha )$
Partial pressure of hydrogen gas can be written as,
$p{H_2} = X\alpha = \dfrac{{2p\alpha }}{{2 + \alpha }}$
Partial pressure of oxygen gas can be written as,
$p{O_2} = \dfrac{{X\alpha }}{2} = \dfrac{{2p\alpha }}{{2\left( {2 + \alpha } \right)}} = \dfrac{{p\alpha }}{{\left( {2 + \alpha } \right)}}$
When we substitute these values on the equation of ${K_p}$ , we will get the same answer.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

